大连理工大学  登录  English 
薛闯
点赞:

教授   博士生导师   硕士生导师

主要任职: 生物工程学院副院长

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 生物工程学院

学科: 生物化工. 膜科学与技术. 微生物学

联系方式: xue.1@dlut.edu.cn

电子邮箱: xue.1@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
A novel in situ gas stripping-pervaporation process integrated with acetone-butanol-ethanol fermentation for hyper n-butanol production

点击次数:

论文类型: 期刊论文

发表时间: 2016-01-01

发表刊物: BIOTECHNOLOGY AND BIOENGINEERING

收录刊物: SCIE、EI、PubMed、ESI高被引论文、Scopus

卷号: 113

期号: 1

页面范围: 120-129

ISSN号: 0006-3592

关键字: ABE fermentation; carbon nanotube; gas stripping; pervaporation; butanol

摘要: Butanol is considered as an advanced biofuel, the development of which is restricted by the intensive energy consumption of product recovery. A novel two-stage gas stripping-pervaporation process integrated with acetone-butanol-ethanol (ABE) fermentation was developed for butanol recovery, with gas stripping as the first-stage and pervaporation as the second-stage using the carbon nanotubes (CNTs) filled polydimethylsiloxane (PDMS) mixed matrix membrane (MMM). Compared to batch fermentation without butanol recovery, more ABE (27.5g/L acetone, 75.5g/L butanol, 7.0g/L ethanol vs. 7.9g/L acetone, 16.2g/L butanol, 1.4g/L ethanol) were produced in the fed-batch fermentation, with a higher butanol productivity (0.34g/L<bold>h vs</bold>. 0.30g/L<bold>h</bold>) due to reduced butanol inhibition by butanol recovery. The first-stage gas stripping produced a condensate containing 155.6g/L butanol (199.9g/L ABE), which after phase separation formed an organic phase containing 610.8g/L butanol (656.1g/L ABE) and an aqueous phase containing 85.6g/L butanol (129.7g/L ABE). Fed with the aqueous phase of the condensate from first-stage gas stripping, the second-stage pervaporation using the CNTs-PDMS MMM produced a condensate containing 441.7g/L butanol (593.2g/L ABE), which after mixing with the organic phase from gas stripping gave a highly concentrated product containing 521.3g/L butanol (622.9g/L ABE). The outstanding performance of CNTs-PDMS MMM can be attributed to the hydrophobic CNTs giving an alternative route for mass transport through the inner tubes or along the smooth surface of CNTs. This gas stripping-pervaporation process with less contaminated risk is thus effective in increasing butanol production and reducing energy consumption. Biotechnol. Bioeng. 2016;113: 120-129. (c) 2015 Wiley Periodicals, Inc.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学