贺高红

个人信息Personal Information

教授

博士生导师

硕士生导师

任职 : 大连理工大学膜科学与技术研究开发中心主任

性别:女

毕业院校:中国科学院大连化物所

学位:博士

所在单位:化工学院

学科:化学工程. 膜科学与技术. 生物医学工程

联系方式:hgaohong@dlut.edu.cn

电子邮箱:hgaohong@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Enhanced hydroxide conductivity of imidazolium functionalized polysulfone anion exchange membrane by doping imidazolium surface-functionalized nanocomposites

点击次数:

论文类型:期刊论文

发表时间:2016-01-01

发表刊物:RSC ADVANCES

收录刊物:SCIE、EI

卷号:6

期号:63

页面范围:58380-58386

ISSN号:2046-2069

摘要:A new method was proposed to prepare a membrane with regional aggregation of functional groups by incorporating nanocomposites surface-functionalized with a large number of functional groups. Imidazolium surface-functionalized SiO2 (SiO2-Im) nanocomposites were synthesized by the reaction of 1,2-dimethylimidazole, gamma-chloropropyl triethoxysilane and SiO2 nanocomposites. The obtained SiO2-Im nanocomposites were incorporated into imidazolium functionalized polysulfone (PSf-Im) to fabricate composite alkaline anion exchange membranes. The uniform dispersion of nanocomposites in the membrane was demonstrated by SEM. With increasing mass ratio of SiO2-Im from 0% to 20%, hydroxide conductivity of composite membrane dramatically increases at first and then decreases. The composite membrane with 12 wt% of SiO2-Im shows the highest conductivity, e.g., the hydroxide conductivity of the composite membrane based on PSf-Im with functionalization degree of 76% reaches 32 mS cm(-1) (at 20 circle C) that is 68% higher than the membrane's without doping SiO2-Im (19 mS cm(-1)). In addition, adding SiO2-Im has a slight effect on water uptake and swelling ratio of composite membrane. It indicates that doping surface-functionalized nanocomposites is a simple and effective method to enhance the hydroxide conductivity without increasing swelling.