Current position: Home >> Scientific Research
Zhongkui Zhao

Personal Information

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates  

Scientific Research

  • 面向能源和环境,研究构筑特定结构和功能催化材料的新方法、新概念及催化活性位的调控,揭示其构效关系,创制高效催化新材料。


    (1)环境友好催化化学与催化剂

    (2)绿色合成催化(精细和大宗化学品清洁合成)

    (3)能源化工催化(低碳烷烃、合成气、二氧化碳、生物质等催化定向转化)

    (4)光催化(光解水制氢、污染物降解和清洁高效有机合成)

     

     

    先进催化材料研究组,可以招生报考大连理工大学的工业催化、能源化工、应用化学 三个专业的博士及工业催化、能源化工 专业的硕士研究生(注:报考时,选择相关专业的任意研究方向均可)。欢迎各地有志之博士生和硕士生加盟本研究组(欢迎具有催化、物理化学、材料化学、有机、无机等不同学科背景的学生加盟),也欢迎来研究组从事博士后研究工作;大家共同成长,携手发展,共创美好未来。为了学生的未来发展,自2017年1月1日起,发表论文,研究生为论文第一作者(注:适用于所有研究生,包括硕士生和博士生)。

     

     Publications:

    2022

    [1] Ting Zhang,1 Zhe Sun,1 Shiyan Li,2 Baojun Wang,3 Yuefeng Liu,2,* Riguang Zhang,3,* and Zhongkui Zhao,1,* Regulating electron configuration of single Cu sites via unsaturated N,O-coordination for selective oxidation of benzene to phenol, Nature Communications, 2022, 13, 6996. DOI: 10.1038/s41467-022-34852-y (IF=17.694)

    [2] Mengzhao Liu,a Zhe Sun,a Chaofan Zhang,a Shiyan Li,b Chaozhen He,c Yuefeng Liu,*b and Zhongkui Zhao*a Multi-interfacial engineering of Coil-like NiS-Ni2P/Ni hybrid to efficiently boost electrocatalytic hydrogen generation in alkaline and neutral electrolyte, Journal of Materials Chemistry A, 2022, 10, 13410-13417. DOI: 10.1039/D2TA03021G. (IF=14.511)

    [3] Ting Zhang,a,1  Zhenyu Xie,a,1 Luozhen Jiang,b,1 Wantong Zhao,c Shuo Cao,d Baojun Wang,c Rui Si,b Riguang Zhang,c,* Yuefeng Liu,d,* and Zhongkui Zhaoa,* Selective transfer hydrogenation coupling of nitroaromatics to azoxy/azo compounds by electron-enriched single Ni-N4 sites on mesoporous N-doped carbon, Chemical Engineering Journal, 2022, 443, 136416. xxx-xxxx. DOI: 10.1016/j.cej.2022.136416. (IF=16.744)

    [4] Xiaojing Wei§,†, Guifang Ge§,†, Weiwei Yu§,†, Hongchen Guo†, Xinwen Guo†, Chunshan Song*,‡,‖, and Zhongkui Zhao*,† Plastering Sponge with Nanocarbon-Containing Slurry to Construct Mechanically Robust Macroporous Monolithic Catalysts for Direct Dehydrogenation of Ethylbenzene, ACS Applied Materials & Interfaces,2022, 14(17) :19315-19323. (IF=10.383)

    [5] Weiwei Yu,a Xue Zhang,a Guanchao Wang,a and Zhongkui Zhao*a,  Synergistic effect of biomass-derived carbon decoration and nitrogen defects on seaweed-like tubular g-C3N4 for enhanced photocatalytic H2 evolution,  Catalysis Science & Technology, 2022, 12, xxxxx. DOI:  10.1039/D2CY01772E.  (IF=6.177).

    [6] Guifang Ge, Xiaojing Wei, Hongchen Guo, Zhongkui Zhao*, An efficient nanodiamond-based monolithic foam catalyst prepared by a facile thermal impregnation strategy for direct dehydrogenation of ethylbenzene to styrene, Chinese Chemical Letters, 2022, 33, 107808.  DOI: 10.1016/j.cclet.2022.107808. (IF=8.458)

    [7] Mengzhao Liu,† Erdong Wang,‡ and Zhongkui Zhao*,†, NiPN/Ni Nanoparticles-Decorated Carbon Nanotube Forest as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting in Alkaline Electrolyte, ACS Applied Nano Materials, 2022, 5(4), 5335-5345. DOI: 10.1021/acsanm.2c00326.(IF=6.140)

    [8] Xueting Bai1, Yongle Guo1, Zhongkui Zhao*, Silicotungstic acid-derived WO3 composited with ZrO2 supported on SBA-15 as a highly efficient mesoporous solid acid catalyst for the alkenylation of p-xylene with phenylacetylene. Chinese Chemical Letters, 2022, 33(3), 1325-1330. (IF=8.458)

    [9] Yongle Guoa,1, Lu Fengb,c,1, Yuefeng Liub, Zhongkui Zhaoa,* Cu-embedded porous Al2O3 bifunctional catalyst derived from metal–organic framework for syngas-to-dimethyl ether, Chinese Chemical Letters, 2022, 33(6), 2906-2910. (IF=8.458)

    [10] Guifang Ge,[a]§ Xiaojing Wei,[a]§ Hongchen Guo[a] and Zhongkui Zhao*[a], Assembly-in-Foam Approach to Construct Nanodiamond/Carbon Nanotube Hybrid Monolithic Carbocatalysts for Direct Dehydrogenation of Ethylbenzene to Styrene, European Journal of Inorganic Chemistry, 2022, DOI: 10.1002/ejic.202200232. (IF=2.551) (VIP论文、封面论文)

    [11] Zhe Sun, XiaowaNie* and Zhongkui Zhao*, Computational design of CoCu-modified indium oxide catalyst promoting CO2 activation and hydrogenation through electronic regulation, Energy & Fuel, 2022, 36, 7915-7920.  (IF=4.654) 

     

    2021

    [1] Yu Zhang,§,† Weiwei Yu,§,† Shuo Cao,§,‡, Zhe Sun,§,† Xiaowa Nie, Yuefeng Liu and Zhongkui Zhao*,†, Photocatalytic Chemoselective Transfer Hydrogenation of Quinolines to Tetrahydroquinolines on Hierarchical NiO/In2O3-CdS Microspheres, ACS Catalysis, 2021, 11,13408–13415. (IF=13.700)

    [2] Mengzhao Liu,‡a Zhe Sun,‡Shiyan Li,‡b,c Xiaowa Nie,‡a Yuefeng Liu,b Erdong Wang,b and Zhongkui Zhao*a, Hierarchical superhydrophilic/superaerophobic CoMnP/Ni2P nanosheets-based microplates arrays for enhanced overall water splitting, Journal of Materials Chemistry A, 2021, 9, 22129-22139. (IF=14.511)

    [3] Guanchao Wang, Ting Zhang, Weiwei Yu, Zhe Sun, Xiaowa Nie1, Rui Si2*, Yuefeng Liu3*, and Zhongkui Zhao1*, Efficient Electronic Modulation of g-C3N4 Photocatalyst by Implanting Single-Atom Ag-N3 for Extremely High Hydrogen Evolution Rate, CCS Chemistry, 2021, 3, 2850-2862. (IF 暂无,中国化学会旗舰期刊)

    [4] Zhenyu Xie,§ Ting Zhang,§ Zhongkui Zhao*, Ni Nanoparticles Grown on SiO2 Supports Using a Carbon Interlayer Sacrificial Strategy for Chemoselective Hydrogenation of Nitrobenzene and m-Cresol, ACS Applied Nano Materials, 2021, 4, 9353-9360.(IF=6.140)

    [5] Ting Zhang,1 Xinwen Guo,1 Chunshan Song,1 Yuefeng Liu,2,* and Zhongkui Zhao1,*,Fabrication of Isolated VOx Sites on Alumina for Highly Active and Stable Non-Oxidative Dehydrogenation, The Journal of Physical Chemistry C, 2021, 125, 19229-19237.(IF=4.177)

    [6] Ting Zhang, Di Zhang, Xinghua Han, Ting Dong, Xinwen Guo, Chunshan Song, Rui Si*, Wei Liu, Yuefeng Liu*, and Zhongkui Zhao*, Addition to “Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N3 Sites for Selective Oxidation of Benzene to Phenol, Journal of the American Chemical Society, 2022, 144, 1066. (IF=16.383)

     

    2020

    [1] Qin Zhou+, Guifang Ge+, Zhanglong Guo+, Yuefeng Liu, and Zhongkui Zhao*, Poly(Imidazolium-Methylene)-Assisted Grinding Strategy to Prepare Nanocarbons-Embedded Network Monoliths for Carbocatalysis, ACS Catalysis, 2020, 10, 14604-14614. (IF=13.700)

    [2] Weiwei Yu, Ting Zhang, and Zhongkui Zhao*, Garland-like intercalated carbon nitride prepared by an oxalic acid-mediated assembly strategy for highly-efficient visible-light-driven photoredox catalysis, Applied Catalysis B: Environmental, 2020, 278, 119342. DOI: 10.1016/j.apcatb.2020.119342. (IF=24.319)

    [3] Guanchao Wang,†,§ Ting Zhang,†,§ Weiwei Yu,†,§ Rui Si,*,‡ Yuefeng Liu,*, # and Zhongkui Zhao*,†, Modulating Location of Single Copper Atoms in Polymeric Carbon Nitride for Enhanced Photoredox Catalysis, ACS Catalysis, 2020, 10(10), 5715-5722. (Highlighted by cover)  (IF=13.700)

    [4] Weiwei Yu, Xin Shan, and Zhongkui Zhao*,  Unique nitrogen-deficient carbon nitride homojunction prepared by a facile inserting-removing strategy as an efficient photocatalyst for visible light-driven hydrogen evolution, Applied Catalysis B: Environmental, 2020, 269, 118778.  DOI: 10.1016/j.apcatb.2020.118778.  (IF=24.319)

    [5] Qin Zhou and Zhongkui Zhao*, Sulfate Surfactant Assisted Approach to Fabricate Sulphur-Doped Supported Nanodiamond Catalyst on Carbon Nanotube with Unprecedented Catalysis for Ethylbenzene Dehydrogenation. ChemCatChem, 2020, 12 (1), 342-349.   (IF=5.497)

    [6] Guifang Gea, Xinwen Guoa, Chunshan Songa,b, Zhongkui Zhao*a, Mutually isolated nanodiamond/porous carbon nitride nanosheet hybrid with enriched active sites for promoted catalysis in styrene production, Catalysis Science & Technology, 2020, 10, 1048-1055. (IF=6.177).

    [7] Yingqi Sun, Zhongkui Zhao*, Implanting Copper-Zinc Nanoparticles into the Matrix of Mesoporous Alumina as a Highly Selective Bifunctional Catalyst for Direct Synthesis of Dimethyl Ether from Syngas, ChemCatChem, 2020, 12 (5), 1276-1281. (IF=5.497)  Highlighted by Advanced Science News WeChat platform.

    [8] Yongle Guo, Zhongkui Zhao*, Ethanol as a Binder to Fabricate a Highly-Efficient Capsule-Structured CuO-ZnO-Al2O3@HZSM-5 Catalyst for Direct Production of Dimethyl Ether from Syngas, ChemCatChem, 2020, 12 (4), 999-1006.  (IF=5.497)  Highlighted by Advanced Science News WeChat platform. https://mp.weixin.qq.com/s/SC79U_sph6Q3mRMzEAhNHA

    [9] Zhongkui Zhao*, Catalytic Conversion of Carbon Oxides in Confined Spaces: Status and Prospects, ChemCatChem, 2020, 12, 3960-3981. (Invited Review)   (IF=5.497) Highlighted by Advanced Science News WeChat platform.  Catalysis in Confined Spaces" and "Hot Topic: Carbon Dioxide".

     

    2019

    [1] Weiwei Yu, Xinwen Guo, Chunshan Song, Zhongkui Zhao*, Visible-light-initiated one-pot clean synthesis of nitrone from nitrobenzene and benzyl alcohol over CdS photocatalyst.  Journal of Catalysis, 2019, 370, 97-106. (IF=8.047)

    [2] Ting Zhang,1,5 Xiaowa Nie,1,5 Weiwei Yu,1 Xinwen Guo,1 Chunshan Song,1,2 Rui Si,3,* Yuefeng Liu,4,* and Zhongkui Zhao1,6,*,  Single Atomic Cu-N2 Catalytic Sites for Highly Active and Selective Hydroxylation of Benzene to Phenol, iScience, 2019, 22, 97-108. (IF=6.107)

    [3] Yongle Guo[a], Xinwen Guo[a], Chunshan Song[a,b], Xinghua Han*[c], Hongyang Liu*[d], Zhongkui Zhao*[a],  Capsule-structured copper-zinc catalyst for highly efficient hydrogenation of carbon dioxide to methanol, ChemSusChem, 2019, 12, 4916-4926.  (Highlighted by Front Cover) (IF=9.140)

    [4] Qin Zhou, and Zhongkui Zhao*, Defect-Enriched N,O-Codoped Nanodiamond/Carbon Nanotube Catalysts for Styrene Production via Dehydrogenation of Ethylbenzene. ACS Applied Nano Materials, 2019, 2, 2152-2159. (IF=6.140)

    [5] Yongle Guo, Zhongkui Zhao*, Hierarchical Hβ zeolite as a highly efficient solid acid catalyst for alkenylation of p-xylene with phenylacetylene. Chemical Engineering Science, 2019, 201, 25-33. (IF=4.889) (三大化工期刊之一)

    [6] Xin Shan, Guifang Ge, and Zhongkui Zhao*, Fabrication of Tubular g‐C3N4 with N‐Defects and Extended π‐Conjugated System for Promoted Photocatalytic Hydrogen Production. ChemCatChem, 2019, 11:1534-1544. (IF=5.497) (Post on Hot Topic: Photocatalysis and Advanced Science News WeChat platform) Highlighted by Advanced Science News WeChat platform.

    [7] Guifang Ge, Zhongkui Zhao*, Nanodiamond@carbon nitride hybrid with loose porous carbon nitride layers as an efficient metal-free catalyst for direct dehydrogenation of ethylbenzene, Applied Catalysis A: General, 2019, 571, 82-88. (IF=5.723)

    [8]Panpan Ren and Zhongkui Zhao*,Unexpected coke-resistant stability in steam-CO2 dual reforming of methane over the robust Mo2C-Ni/ZrO2 catalyst, Catalysis Communications, 2019, 119, 71-75. (IF=3.510)

    [9] Xin Shan, Guifang Ge, and Zhongkui Zhao*, Facile and Scalable Fabrication of Porous g-C3N4 Nanosheets with Nitrogen Defects and Oxygen-doping for Synergistically Promoted Visible Light Photocatalytic H2 Evolution. Energy Technology, 2019, 7(5), 1800886. DOI: 10.1002/ente.201800886. (IF=4.149)

    [10] Xianhui Wang, Zhongkui Zhao*, Spherical hollow mesoporous silica supported phosphotungstic acid as a promising catalyst for alpha-arylstyrenes synthesis via Friedel-Crafts alkenylation. Chinese Chemical Letters, 2019, 30, 729-734. (IF=8.458)

    [11] Guifang Ge and Zhongkui Zhao*, Combining iodic acid and nitric acid to fabricate carbon nitride tubes for enhanced hydrogen evolution under visible light. Catalysis Science & Technology, 2019, 9, 266-270, (IF=6.177)

    [12] Yingqi Sun, Xinghua Han* and Zhongkui Zhao*, Direct coating copper-zinc-aluminum oxalate with H-ZSM-5 to fabricate highly efficient capsule bifunctional catalyst for dimethyl ether production from syngas, Catalysis Science & Technology, 2019, 9, 3763-3770.  (IF=6.177)

    [13] Neng Gong,a,1 Xianhui Wang,a,1 Yu Zhangb and Zhongkui Zhao*a, Mesoporous silica nanosphere with open-mouth stellate pore architecture as a promising carrier for highly active solid acid catalysts. Materials Chemistry and Physics, 2019, 236, 121821. DOI: 10.1016/j.matchemphys.2019.121821. (IF=4.778)

    [14] Neng Gong and Zhongkui Zhao*, Efficient supported Pt-Sn catalyst on carambola-like alumina for direct dehydrogenation of propane to propene. Molecular Catalysis, 2019, 477, 110543. DOI: 10.1016/j.mcat.2019.110543. (IF=5.089)

    [15] Guifang Ge,[a] Hongyang Liu*[b] and Zhongkui Zhao*[a] Three-Dimensional Interconnected Porous Nitrogen-Doped Carbon Hybrid Foam for Notably Promoted Direct Dehydrogenation of Ethylbenzene to Styrene. ChemCatChem, 2019, 11, 4830-4840. (IF=5.497) Highlighted by Advanced Science News WeChat platform.

    [16] Neng Gong and Zhongkui Zhao*, Peony-Like Pentahedral Al(III)-Enriched Alumina Nanosheets for the Dehydrogenation of Propane. ACS Applied Nano Materials, 2019, 2, 5833-5840. (IF=6.140)

    [17] Weiwei Yu, and Zhongkui Zhao*, Catalyst-Free Selective Oxidation of Diverse Olefins to Carbonyls with High Yield Enabled by Light under Mild Conditions, Organic Letters, 2019, 21, 7726-7730. (IF=6.072)

     

    2018

    [1] Ting Zhang,† Di Zhang,† Xinghua Han,‡ Ting Dong,‡ Xinwen Guo,† Chunshan Song,†, Rui Si,* Wei Liu,# Yuefeng Liu,*,# and Zhongkui Zhao*,† Preassembly Strategy To Fabricate Porous Hollow Carbonitride Spheres Inlaid with Single Cu–N3 Sites for Selective Oxidation of Benzene to Phenol. Journal of the American Chemical Society, 2018,140 (49):16936-16940. (IF=16.383)

    [2] Di Zhang, Xinghua Han, Ting Dong, Xinwen Guo, Chunshan Song, Zhongkui Zhao*, Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines,  Journal of Catalysis, 2018, 366, 237-244. (IF=8.047)

    [3] Weiwei Yu, Di Zhang, Xinwen Guo, Chunshan Song and Zhongkui Zhao*, Enhanced Visible light photocatalytic nonoxygen coupling of amines to imines integrated with hydrogen production over Ni/CdS Nanoparticles. Catalysis Science & Technology, 2018, 8, 5148-5154. (IF=6.177) (Highlighted by backcover)

    [4] Ting Zhang, Xinwen Guo and Zhongkui Zhao*. Glucose-Assisted Preparation of Nickel-Molybdenum Carbide Bimetallic Catalyst for Chemoselective Hydrogenation of Nitroaromatics and Hydrodeoxygenation of m-Cresol. ACS Applied Nano Materials, 2018, 1, 3579-3589. (IF=6.140)

    [5] Guifang Ge, Xinwen Guo, Chunshan Song, and Zhongkui Zhao*. Reconstructing Supramolecular Aggregates to Nitrogen Deficient g-C3N4 Bunchy Tubes with Enhanced Photocatalysis for H2 Production. ACS Applied Materials & Interfaces, 2018, 10 :18746-18753. (IF=10.383)

    [6] Di Zhang, Yongle Guo, Zhongkui Zhao*, Porous defect-modified graphitic carbon nitride via a facile one-step approach with significantly enhanced photocatalytic hydrogen evolution under visible light irradiation. Applied Catalysis B: Environmental, 2018,226 :1-9. (IF=24.319) (ESI 高被引用论文)

    [7] Zhongkui Zhao*, Guifang Ge, Di Zhang, Heteroatoms-Doped Carbonaceous Photocatalysts for Solar Fuel Production and Environmental Remediation. ChemCatChem, 2018, 10: 62-123. (IF=5.497) (Invited Review)

    [8] Yongle Guo, Yu Zhang, Zhongkui Zhao*, Ceria modified hierarchical Hβ zeolite as a robust solid acid catalyst for alkenylation of p-xylene with phenylacetylen. Chinese Journal of Catalysis, 2018, 39 :181-189. (IF=12.920)

     

    2017

    [1] Weizuo Li, Zhongkui Zhao*, Guiru Wang, Modulating Morphology and Textural Properties of ZrO2 for Supported Ni Catalysts towards Dry Reforming of Methane. AIChE Journal, 2017, 63 (7), 2900-2915. (IF=4.167). (Top 1 Journal in Chem Eng)

    [2] Zhongkui Zhao*, Panpan Ren, Weizuo Li, Boyuan Miao, Effect of mineralizers for preparing ZrO2 support on the supported Ni catalyst for steam-CO2 bi-reforming of methane. International Journal of Hydrogen Energy, 2017, 42, 6598-6609. (IF=7.139)

    [3] Zhongkui Zhao*, Yongle Guo, The supported sulphated La2O3-ZrO2 on SBA-15 as a promising mesoporous solid superacid catalyst for alkenylation of p-xylene with phenylacetylene. Catalysis Communications, 2017, 93, 53-56. (IF=3.510

    [4] 赵忠奎.拔尖创新人才培养导向下教学新模式探索.教育教学论坛, 2017, (39), 106-109.

    [5] 陈令成,赵忠奎.微课对大学化学化工实验教学的作用.教育教学论坛,2017, (22), 270-272.

     

    2016

    [1] Weizuo Li, Zhongkui Zhao*, Xinwen Guo and Guiru Wang, Employing Nickel-Containing Supramolecular Framework as Ni Precursor for Synthesizing Robust Supported Ni Catalyst for Dry Reforming of Methane. ChemCatChem, 2016, 8, 2939-2952 (IF=5.497)

    [2] Weizuo Li, Zhongkui Zhao*, Yanhua Jiao and Guiru Wang, Morphology effect of zirconia support on the catalytic performance of supported Ni catalysts for dry reforming of methane. Chinese Journal of Catalysis, 2016, 37, 2122-2133. (IF=12.920)

    [23] Zhongkui Zhao*, Xianhui Wang, Supported phosphotungstic acid catalyst on mesoporous carbon with bimodal pores: A superior catalyst for Friedel-Crafts alkenylation of aromatics with phenylacetylene. Applied Catalysis A: General, 2016, 526, 139-146. (IF=5.723)

    [3] Weizuo Li, Zhongkui Zhao*, Yanhua Jiao, Dry reforming of methane towards CO-rich hydrogen production over robust supported Ni catalyst on hierarchically structured monoclinic zirconia nanosheets.  International Journal of Hydrogen Energy, 2016, 41, 17907-17921. (IF=7.139)

    [4] Weizuo Li and Zhongkui Zhao*, Hierarchically-structured tetragonal zirconia as promising support for robust Ni based catalyst for dry reforming of methane. RSC Advances, 2016, 6, 72942-72951. (IF=4.036)

    [5] Zhongkui Zhao*, Jinfeng Ran, Yongle Guo, Boyuan Miao, Guiru Wang, Tuning of the textural features and acidic properties of sulfated mesoporous lanthana‐zirconia solid acid catalysts for alkenylation of diverse aromatics to their corresponding α‐arylstyrenes. Chinese Journal of Catalysis, 2016, 37, 1303-1313. (IF=12.920)

    [6] Zhongkui Zhao*, Guifang Ge, Weizuo Li, Xinwen Guo, Guiru Wang, Modulating the microstructure and surface chemistry of carbocatalysts for oxidative and direct dehydrogenation: A review. Chinese Journal of Catalysis, 2016, 37, 644–670. (IF=12.920) (Highlighted as Cover article)

    [7] Zhongkui Zhao*, Panpan Ren and Weizuo Li, Supported Ni catalyst on a natural halloysite derived silica–alumina composite oxide with unexpected coke-resistant stability for steam-CO2 dual reforming of methane. RSC Advanes, 2016, 6, 49487–49496. (IF=3.361)

    [8] Zhongkui Zhao*, Xianhui Wang, Yanhua Jiao, Boyuan Miao, Xinwen Guo, and Guiru Wang, Facile, low-cost, and scalable fabrication of particle size and pore structure tuneable monodisperse mesoporous silica nanospheres as supports for advanced solid acid catalysts. RSC Advances, 2016, 6, 9072–9081. (IF=4.036)

    [9] Zhongkui Zhao*, Jinfeng Ran, Yanhua Jiao, Weizuo Li, Boyuan Miao, Modified natural halloysite nanotube solely employed as an efficient and low-cost solid acid catalyst for alpha-arylstyrenes production via direct alkenylation. Applied Catalysis A: General, 2016, 513, 1-8. (IF=5.723)

     

    2015

    [1] Weizuo Li, Zhongkui Zhao*, Panpan Ren, and Guiru Wang, Effect of molybdenum carbide concentration on the Ni/ZrO2 catalysts for steam-CO2 bi-reforming of methane. RSC Advances, 2015, 5, 100865-100872. (IF=4.036)

    [2] Zhongkui Zhao,* Weizuo Li, Yitao Dai, Guifang Ge, Xinwen Guo and Guiru Wang, Carbon Nitride Encapsulated Nanodiamond Hybrid with Improved Catalytic Performance for Clean and Energy-Saving Styrene Production via Direct Dehydrogenation of Ethylbenzene. ACS Sustainable Chemistry & Engineering, 2015, 3, 3355-3364. (IF=9.224)

    [3] Weizuo Li, Zhongkui Zhao*, Fanshu Ding, Xinwen Guo, and Guiru Wang, Syngas Production via Steam-CO2 Dual Reforming of Methane over LA-Ni/ZrO2 Catalyst Prepared by L-Arginine Ligand-Assisted Strategy: Enhanced Activity and Stability. ACS Sustainable Chemistry & Engineering, 2015, 3, 3461-3476. (IF=9.224)

    [4] Zhongkui Zhao*, Xianhui Wang, Supported phosphotungstic acid catalyst on modified activated carbon for Friedel-Crafts alkenylation of diverse aromatics to their corresponding α-arylstyrenes. Applysis Catalysis A: General, 2015, 503, 103-110. (IF=5.723)

    [5] Zhongkui Zhao,* Yitao Dai, Guifang Ge, Xinwen Guo and Guiru Wang, Facile simultaneous defect producing and O,N-doping of carbon nanotube with unexpected catalytic performance for clean and energy-saving production of styrene. Green Chemistry, 2015,17, 3723-3727. (IF=11.034) (highlighted as back cover)

    [6] Zhongkui Zhao,* Yitao Dai, Guifang Ge, Xinwen Guo and Guiru Wang, Nitrogen-doped carbon nanotube by a facile two-step approach as an efficient catalyst for ethylbenzene direct dehydrogenation. Physical Chemistry Chemical Physics, 2015, 17, 18895-18899. (IF=3.945) (highlighted as back cover)

    [7] Zhongkui Zhao*, Yitao Dai, Guifang Ge, Xinwen Guo and Guiru Wang, Increased active sites and their accessibility of N-doped carbon nanotube carbocatalyst with remarkably enhanced catalytic performance in direct dehydrogenation of ethylbenzene. RSC Advances, 2015, 5, 53095-53099. (IF=4.036)

    [8] Zhongkui Zhao*, Yitao Dai, Guifang Ge, and Guiru Wang, Efficient Tuning of Microstructure and Surface Chemistry of Nanocarbon Catalysts for Ethylbenzene Direct Dehydrogenation. AIChE Journal, 2015, 61, 2543-2561. (IF=4.167) (Top 1 Journal in Chem Eng)

    [9] Zhongkui Zhao*, Yitao Dai, Guifang Ge, and Guiru Wang. The explosive decomposition of melamine-cyanuric acid supramolecular assembly for fabricating defect-rich nitrogen-doped carbon nanotubes with significantly promoted catalysis. Chemistry-A European Journal, 2015, 21, 8004-8009. (IF=5.020) (Hot paper) (highlighted as frontispiece)

    [10] Zhongkui Zhao*, Yitao Dai, Guifang Ge, Qing Mao, Zeming Rong, and Guiru Wang, A Facile Approach to Fabricate N-Doped Mesoporous Graphene/Nanodiamond Hybrid Nanocomposite with Synergistically Enhanced Catalysis. ChemCatChem, 2015, 7, 1070-1077. (IF=5.497) (highlighted as inside cover)

    [11] Zhongkui Zhao*, Yitao Dai, Guifang Ge and Guiru Wang, Guanidine Nitrate Enhanced Catalysis of Nitrogen-Doped Carbon Nanotube for Metal-Free Styrene Production via Direct Dehydrogenation. ChemCatChem, 2015, 7, 1135-1144. (IF=5.497)

    [12] Zhongkui Zhao* and Jinfeng Ran, Sulphated mesoporous La2O3-ZrO2 composite oxide as an efficient and reusable solid acid catalyst for alkenylation of aromatics with phenylacetylene. Applied Catalysis A: General, 2015, 503, 77-83. (IF=5.723)

    [13] Zhongkui Zhao,* Yitao Dai, and Guifang Ge, Nitrogen-doped nanotubes-decorated activated carbon-based hybrid nanoarchitecture as superior catalyst for direct dehydrogenation. Catalysis Science Technology, 2015, 5, 1548-1557. (IF=6.177)

    [14] Zhongkui Zhao* and Hongling Yang, Ni-W2C/mpg-C3N4 as a promising catalyst for selective hydrogenation of nitroarenes to corresponding aryl amines in the presence of Lewis acid. Journal of Molecular Catalysis A: Chemistry, 2015, 398, 268-274. (IF=5.089)

    [15] Zhongkui Zhao, Nandita Lakshminarayanan, Scott L. Swartz, Gene B. Arkenberg,Larry G. Felix, Rachid B. Slimane, Chun C. Choi, Umit S. Ozkan*, Characterization of olivine-supported nickel silicate as potentialcatalysts for tar removal from biomass gasification. Applied Catalysis A: General, 2015, 489, 42–50. (IF=5.723)

    [16] Zhongkui Zhao*, J. H. Lin, G. Wang, T. Muhammad. Novel Co-Mn-O Nanosheet Catalyst for CO Preferential Oxidation toward Hydrogen Purification. AIChE Journal, 2015, 61, 239-252. (IF=4.167) (Top 1 Journal in Chem. Eng.)

    [17] 赵忠奎*,刘柬葳, 离子液体中ATRP法合成MCC-g-PGMA分子及其组装研究.河北工业科技, 2015,32 :390-395.

    [18] Zhongkui Zhao*, Renzhi Li, Yu Li, and Guiru Wang, Simple Primary Amine Catalyzed Aerobic Reductive Ring-Cleavage of Isoxazole Motif.  Chinese Journal of Catalysis, 2015, 36, 204-208. (IF=12.920)

     

    2014

    [1] Zhongkui Zhao* and Yitao Dai, Nanodiamond/carbon nitride hybrid nanoarchitecture as an efficient metal-free catalyst for oxidant- and steam-free dehydrogenation. Journal of Materials Chemistry A, 2014, 2, 3442-13451. (IF=14.511)

    [2] Zhongkui Zhao,* Yitao Dai, Jinhan Lin and Guiru Wang, Highly-Ordered Mesoporous Carbon Nitride with Ultrahigh Surface Area and Pore Volume as a Superior Dehydrogena-tion Catalyst. Chemistry of Materials, 2014, 26, 3151-3161. (IF=10.508) (ESI 1% 高被引论文)

    [3] Zhongkui Zhao,* Hongling Yang and Yu Li, Synergistic effect from Lewis acid and the Ni-W2C/AC catalyst for highly active and selective hydrogenation of aryl nitro to aryl amine. RSC Advances, 2014, 4 , 22669-22677. (IF=4.036)

    [4] Turghun Muhammad*, Osmanjan Yimit, Yunusjan Turahun, Kipayem Muhammad, Yildiz Uluda, Zhongkui Zhao, On-line determination of 4-nitrophenol by combining molecularly imprinted solid phase extraction and fiber optic spectrophotometer. Journal of Separation Science, 2014, 37, 1873-1879. (IF=3.614)

    [5] Zhongkui Zhao,* Hongling Yang, Yu Li and Xinwen Guo, Cobalt-modified molybdenum carbide as an efficient catalyst for chemoselective reduction of aromatic nitro compounds. Green Chemistry, 2014, 16 , 1274-1281. (IF=11.034)

    [6] Zhongkui Zhao*, Renzhi Li, Yu Li, Reductive cleavage of isoxazole motif catalyzed by copper for highly-efficient and clean synthesis of 1-amino-2-acetyl anthraquinone. Chinese Journal of Catalysis, 2014, 35 , 319-323. (IF=12.920)

    [7] Zhongkui Zhao,*, Ting Bao, Yu Li, Xue Min, Dan Zhao and Turghun Muhammad, The supported CeO2/Co3O4-MnO2/CeO2 catalyst on activated carbon prepared by a successive-loading approach with superior catalytic activity and selectivity for CO preferential. Catalysis Communications, 2014, 48, 24-28. (IF=3.510)

    [8] 布热比亚.亚合普,吐尔洪.买买提,尤努斯江.吐拉洪,佐拉木.买买提,克帕亚木.买买提,阿布都热合曼.吐尔逊,赵忠奎. 齐多夫定及其乙酸酯与牛血清白蛋白相互作用的光谱学研究.中国实验方剂学杂志, 2014,20 (14):95-99.

    [9] Zhongkui Zhao*, Yu Li, Ting Bao, Guiru Wang and Turghun Muhammad, Hierarchically nanoporous Co-Mn-O/FeOx as a high performance catalyst for CO preferential oxidation in H2-rich stream. Catalysis Communications, 2014, 46, 28-31. (IF=3.510)

     

    2013

    [1] Zhongkui Zhao*, Renzhi Li, Yu Li. A facile reductive ring-cleavage of isoxazole motif to synthesize 1-amino-2-acetylanthraquinone: Dual role of N,N-dimethylformamide. ScienceJet, 2013, 2, 41.

    [2] Zhongkui Zhao*, Ronghua Jin, Yu Li, Yitao Dai, Turghun Muhammad,Mesostructured Co-Ce-Zr-Mn-O composite as a potential catalyst for efficient removal of carbon monoxide from hydrogen-rich stream. Catalysis Science & Technology, 2013,3, 2130-2139. (IF=6.177)

    [3] Zhongkui Zhao*, Xiaoli Lin, Yang Zeng, Ting Bao, Yitao Dai, Ronghua Jin, Turghun Muhammad, Bismuth effect on the catalytic performance of the nanoparticulate Co-Mn/Ce0.85Zr0.15O2 for CO preferential oxidation in simulated syngas. International Journal of Hydrogen Energy, 2013, 38, 1873-1882. (IF=7.139)

    [4] Zhongkui Zhao*, Ting Bao, Y. Zeng, Guiru Wang, and Turghun Muhammad, Efficient cobalt-manganese oxide catalyst deposited on modified AC with unprecedented catalytic performance in CO preferential oxidation. Catalysis Communications, 2013, 32, 47-51. (IF=3.510)

    [5] Zhongkui Zhao*, Ronghua Jin, Xiaoli Lin, Guiru Wang, H3PW12O40/MCM-41 mesoporous solid acid as promising catalysts for alkenylation of p-xylene with phenylacetylene. Energy Sources, Part A, 2013, 35 , 1761-1769. (IF=2.902)

    [6] Zhongkui Zhao*, Yitao Dai, A comparison of the H3PW12O40/MCM-41 and HY zeolite for alkenylation of p-xylene with phenylacetylene. Advanced Materials Research, 2013, 634-638, 377-381.

     

    2012

    [1] Ting Bao, Zhongkui Zhao*, Yitao Dai, Xiaoli Lin, Ronghua Jin, Guiru Wang, Turghun Muhammad, Supported Co3O4-CeO2 catalysts on modified activated carbon for CO preferential oxidation in H2-rich gases. Applied Catalysis B: Environmental, 2012,119-120, 62-73. (IF=24.319)

    [2] Zhongkui Zhao*, Yitao Dai, Ting Bao, Renzhi Li, Guiru Wang, Direct alkenylation of aromatics with phenylacetylene over supported H3PW12O40 catalysts as a clean and highly efficient approach to producing α-arylstyrenes. Journal of Catalysis, 2012, 288, 44-53. (IF=8.047)

    [3] Zhongkui Zhao*, Xiaoli Lin, Ronghua Jin, Yitao Dai, Guiru Wang, Improvement of nano-particulate CexZr1-xO2 composite oxides supported cobalt oxide catalysts for CO preferential oxidation in H2-rich gases. Catalysis Science & Technology, 2012, 2, 554-563. (IF=6.177)

    [4] Zhongkui Zhao*, Ronghua Jin, Ting Bao, Hongling Yang, Xiaoli Lin, Guiru Wang, Mesoporous CexMn1-xO2 composites as novel alternative carriers of supported Co3O4 catalysts for CO preferential oxidation in H2 stream. International Journal of Hydrogen Energy, 2012,37, 4774-4786. (IF=7.139)

    [5] Zhongkui Zhao*, Xiaoli Lin, Ronghua. Jin, Guiru Wang, Turghun Muhammad, MOx (M = Mn, Fe, Ni or Cr) improved supported Co3O4 catalysts on ceria-zirconia nanoparticulate for CO preferential oxidation in H2-rich gases. Applied Catalysis B: Environmental, 2012,115-116, 53-62. (IF=24.319)

     


    2011

    [1] Zhongkui Zhao*, Ronghua Jin, Ting Bao, Xiaoli Lin, Guiru Wang, Mesoporous ceria-zirconia supported cobalt oxide catalysts for CO preferential oxidation reaction in excess H2Applied Catalysis B: Environmental, 2011, 110, 154-163. (IF=24.319)

    [2] Zhongkui Zhao*, Xiaoli Lin, Ronghua Jin, Yitao Dai, Guiru Wang, High catalytic activity in CO PROX reaction of low cobalt-oxide loading catalysts supported on nano-particulate CeO2–ZrO2 oxides. Catalysis Communications, 2011,12, 1448-1451.(IF=3.510)

    [3] Ronghua Jin, Xiaoli Lin, Guiru Wang, Zhongkui Zhao*, Recent progress in high-specific surface area ceria-zirconia composite oxides: Insights into fabrication, characterization and application in heterogeneous catalysis. Global Journal of Physical Chemistry, 2011, 2, 371-385.

     


    2010年及以前论文

    [1] Zhongkui Zhao*, Xiaoli Lin, Ronghua Jin, Guiru Wang, Recent progress on the non-precious metal oxides catalyzed preferential oxidation of carbon monoxide in excess H2Current Topic Catalysis, 2010, 9, 1-14.

    [2] Qijun Hou, Bumei Zheng, Chenguang Bi, Jimei Luan, Zhongkui Zhao*, Hongchen Guo, Guiru Wang, Zongshi Li, Liquid-phase cascade acylation/dehydration over various zeolite catalysts to synthesize 2-methyl anthraquinone through an efficient one-pot strategy. Journal of Catalysis, 2009, 268, 376-383. (IF=8.047)

    [3] Zhongkui Zhao, Nandita Lakshminarayanan, John N. Kuhn, Allyson Senefeld-Naber, Larry G. Felix, Rachid B. Slimane, Chun W. Choi, Umit S. Ozkan*, Optimization of thermally impregnated Ni-olivine catalysts for tar removal. Applied Catalysis A: General, 2009, 363 (1-2), 64-72. (IF=5.723)

    [4] Zhongkui Zhao, John N. Kuhn, Umit S. Ozkan*, Larry G. Felix, Rachid B. Slimane, Thermally impregnated Ni-olivine catalysts for tar removal by steam reforming in biomass gasifiers. Industrial Engineering Chemical Research, 2008,47 (3):717-723. (IF=4.326)

    [5] Zhongkui Zhao, Matthew M. Yung, Umit S. Ozkan*, Effect of supports on preferential CO oxidation in hydrogen-rich gas over Co catalysts. Catalysis Communications, 2008,9 (6):1465-1471. (IF=3.510)

    [6] John N. Kuhn, Zhongkui Zhao, Larry G. Felix, Rachid B. Slimane, Chun W. Choi, Umit S. Ozkan*, Olivine catalysts for methane- and tar- steam reforming. Applied Catalysis B: Environmental, 2008, 81 : 14-26. (IF=24.319)

    [7] Matthew M. Yung, Zhongkui Zhao, Matthew P. Woods, Umit S. Ozkan*, Preferential Oxidation of Carbon Monoxide on CoOx/ZrO2Journal of Molecular Catalysis A: Chemical, 2008,279 (1-2):1-9. (IF=5.089)

    [8] John N. Kuhn, Zhongkui Zhao, Allyson Senefeld-Naber, Larry G. Felix, Rachid B. Slimane, Chun W. Choi, Umit S. Ozkan*, Ni-olivine catalysts prepared by thermal impregnation: structure, steam reforming activity and stability. Applied Catalysis A: General, 2008, 341, 43-49. (IF=5.723)

    [9] 赵忠奎*,李宗石,乔卫红,程侣柏, 癸基甲基萘磺酸盐表面活性剂的合成及性能研究(强碱). 大连理工大学学报, 2008,48 (3), 318-322

    [10] Zhongkui Zhao*, Chenguang Bi, Weihong Qiao, Zongshi Li, Lvbo B. Cheng, Dynamic interfacial tension behavior of the novel surfactant solutions and Daqing crude oil. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007, 294, 191-202. (IF=5.518)

    [11] ZhongkuiZhao*, Fei Liu, Wenli Wang, Zongshi Li, Weihong Qiao, Lvbo Cheng, Studies on Dynamic Interfacial Tension between Crude Oil and Novel Surfactant Solutions with Buffered Alkaline. Energy Source Part A-Recovery Utilization and Environmental Effects, 2007,29 (6):537-547. (IF=2.902)

    [12] Zhongkui Zhao*, Zongshi Li, Weihong Qiao and Lvbo Cheng, Dynamic Interfacial Tension Between Crude Oil and Dodecyl methylnaphthalene Sulfonate Surfactant Flooding Systems. Energy Source Part A-Recovery Utilization and Environmental Effects, 2007, 29 (3), 207-215. (IF=2.902)

    [13] Zhongkui Zhao*, Chenguang Bi, Zongshi Li, Weihong Qiao, Lvbo Cheng, Interfacial tension between crude oil and decylmethylnaphthalene sulfonate surfactant solution without alkaline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006,276 :186-191. (IF=5.518)

    [14] Zhongkui Zhao*, Weihong Qiao, Xiuna Wang, Guiru Wang, Zongshi Li, Lvbo Cheng, Effect of alkaline earth on the performance of HY zeolite for Friedel-Crafts alkylation of α-methylnaphthalene with long-chain olefins. Microporous and Mesoporous Materials, 2006,94 :105-112. (IF=5.876)

    [15] Zhongkui Zhao*, Weihong Qiao, Guiru Wang, Zongshi Li, Lvbo Cheng, Alkylation of α-methylnaphthalene with long-chain olefins catalyzed by rare earth lanthanum modified HY zeolite. Journal of Molecular Catalysis A: Chemical, 2006, 250 : 50-56. (IF=5.089)

    [16] Zhongkui Zhao*, Wenli Wang, Weihong Qiao, Guiru Wang, Zongshi Li, Lvbo Cheng, HY zeolite catalyst for alkylation of α-methylnaphthalene with long-chain alkenes. Microporous and Mesoporous Materials, 2006, 93 :164-170. (IF=5.876)

    [17] Zhongkui Zhao*, Fei Liu, Zongshi Li, Weihong Qiao, Lvbo Cheng, Novel alkyl methylnaphthalene sulfonate surfactants: a good candidate for enhanced oil recovery. Fuel, 2006, 85, 1815-1820.(IF=8.035)

    [18] Zhongkui Zhao*, Zongshi Li, Weihong Qiao, Lvbo Cheng, Dynamic Interfacial Tension Between Crude Oil and Octylmethylnaphthalene Sulfonate Surfactant Solution (Buffered alkaline and without alkaline). Energy Source Part A-Recovery Utilization and Environmental Effects, 2006,28 (15):1397-1403. (IF=2.902)

    [19] Zhongkui Zhao*, Yan Ba, Zongshi Li, Weihong Qiao, Lvbo Cheng, Synthesis and Interfacial Behavior of Decyl Methylnaphthalene Sulfonate (Effect of parameters on DITmin, tmin, tul for flooding systems with strong and buffered alkaline). Petroleum Science and Technology, 2006, 24, 595-606. (IF=1.695)

    [20] Zhongkui Zhao, Zongshi Li*, Weihong Qiao, Guiru Wang, Lvbo Cheng, A Study on Friedel-Crafts Alkaylation in Ambient Temperature Ionic Liquids. Petroleum Science and Technology, 2006, 24 :129-135. (IF=1.695)

    [21] Zhongkui Zhao*, Fei Liu, Zongshi Li, Weihong Qiao, Lvbo Cheng, Dynamic Interfacial Tension Behavior Between Crude Oil and Novel Surfactant Flooding Systems without alkaline. Petroleum Science and Technology, 2006,24 :1469-1476. (IF=1.695)

    [22] Zhongkui Zhao*, Weihong Qiao, Guiru Wang, Zongshi Li, Lvbo Cheng, Effects of kinds of ionic liquid catalysts on alkylationsof α-/β-methylnaphthalene with alkenes. Applied Catalysis A: General, 2005, 290 :133-137. (IF=5.723)

    [23] Zhongkui Zhao*, Weihong Qiao, Xiuna Wang, Guiru Wang, Zongshi Li, Lvbo Cheng, HY promoted free-solvent alkylation of α-methylnaphthalene with long chain olefins in liquid-solid intermittent reaction. Journal of Molecular Catalysis A: Chemical, 2005, 241: 194-198. (IF=5.089)

    [24] Zhongkui Zhao*, Zongshi Li, Weihong Qiao, Guiru Wang, Lvbo Cheng, An efficient method for the alkylation of α-methylnaphthalene with various alkylating agents using methanesulfonic acid as novel catalysts and solvents. Catalysis Letters, 2005,102 :219-222. (IF=2.936)

    [25] Zhongkui Zhao*, Weihong Qiao, Guiru Wang, Zongshi Li, Lvbo Cheng, Alkylation of α-methylnaphthalene with long-chain alkenes catalyzed by butylpyridinium chloroaluminate ionic liquid. Journal of Molecular Catalysis A: Chemical, 2005, 231 : 137-143. (IF=5.089)

    [26] Zhongkui Zhao*, Bing Yuan, Weihong Qiao, Zongshi Li, Guiru Wang, Lvbo Cheng, The metal ion modified ionic liquids promoted free-solvent alkylations of α-methylnaphthalene with long-chain olefins. Journal of Molecular Catalysis A: Chemical, 2005,235 :74-80. (IF=5.089)

    [27] Zhongkui Zhao*, Zongshi Li, Weihong Qiao, Lvbo Cheng, Dynamic interfacial behavior between crude oil and octylmethylnaphthalene sulfonate surfactant flooding systems. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2005,259 :71-80. (IF=5.518)

    [28] Zhongkui Zhao, Yan Ba, Zongshi Li*, Weihong Qiao, Synthesis and Surface Activity of alkyl-methylnaphthalene Sulfonate Surfactants. Energy Source Part A-Recovery Utilization and Environmental Effects, 2005, 27, 1277-1283. (IF=2.902)

    [29] 赵忠奎,李宗石*,付新梅,乔卫红,程侣柏. 反相高效液相色谱-电喷雾质谱研究烷基甲基萘单、双磺酸盐的分离.大连理工大学学报, 2005,45 (4):501-504.

    [30] 赵忠奎*,乔卫红,付新梅,李宗石,程侣柏. 系列烷基甲基萘磺酸盐的高效液相色谱和电喷雾离子化质谱分析.分析测试学报, 2005,24 (3):10-13.

    [31] Zhongkui Zhao, Zongshi Li*, Guiru Wang, Weihong Qiao, Lvbo Cheng, Friedel-Crafts alkylation of 2-methylnaphthalene in room temperature ionic liquids. Applied Catalysis A: General, 2004, 262 :69-73. (IF=5.723)

    [32] Zhongkui Zhao*, Weihong Qiao, Zongshi Li, Guiru Wang, Lvbo Cheng, Friedel-Crafts alkylation of α-methylnaphthalene in the presence of ionic liquids.Journal of Molecular Catalysis A: Chemical, 2004, 222 :207-212. (IF=5.089)

    [33] Zhongkui Zhao, Zongshi Li*, Weihong Qiao, Guiru Wang, Lvbo Cheng, Alkylation of α-methylnaphthalene with long-chain olefins over large-pore zeolites. Catalysis Letters, 2004,98 :145-151. (IF=2.936)

    [34]Zhongkui Zhao*, Zongshi Li, Weihong Qiao, and Lvbo Cheng, Study on the Synthesis and Properties of Novel alkyl methylnaphthalene sulfonate surfactants Part 1 Synthesis of Monoalkylated Methylnaphthalene Intermediates for Surfactants. Tenside Surf. Det., 2004, 41 (2):67-71. (IF=1.058)

    [35] Zhongkui Zhao*, Yan Ba, Zongshi Li, Weihong Qiao and Lvbo Cheng, Dynamic Interfacial Behavior of Decyl Methylnaphthalene Sulfonate Surfactants for Enhanced Oil Recovery (Buffered alkaline). Tenside Surfactants Detergents, 2004,41 (5):225-229. (IF=1.058)

    [36] 赵忠奎*,袁冰,李宗石,王桂茹,乔卫红,程侣柏, 环境友好的离子液体及其在付-克反应中的应用.中国基础科学, 2004,6 (1):19-25.

    [108] 赵忠奎,李宗石*,王桂茹,乔卫红,程侣柏, 杂多酸催化剂及其在精细化学品合成中的应用.化学进展(Progress in chemistry), 2004,16 (4):620-630. (IF=1.044)

    [37] 赵忠奎*,乔卫红,袁冰,李宗石,程侣柏, 长链烷基甲基萘的合成.南京理工大学学报, 2004,28 (3):311-315, 320.

    [38] 赵忠奎,乔卫红,李化民,李宗石*,程侣柏, β-甲基萘与长链烯烃烷基化的研究.大连理工大学学报, 2004,44 (1):39-43.

    [39] 董伟峰,赵忠奎,乔卫红,王桂茹,李宗石*,分子筛催化α-甲基萘的异构化.石油化工, 2004,33 :820-823.

    [40] Weihong Qiao, Liangjun Dong, Zhongkui Zhao, Jie Yang, Huamin Li and Zongshi Li*, Interfacial Behavior of Pure Surfactants for Enhanced Oil Recovery Part 1: A study on the adsorption and distribution of cetylbenzene sulfonate. Tenside Surfactants Detergents, 2003, 40 :87-89. (IF=1.058)

    [41] 赵忠奎,乔卫红,王秀娜,李宗石*,程侣柏, 气相色谱-质谱联用研究β-甲基萘的长链烷基化.分析化学(Chinese Journal of Analitical Chemistry), 2003,31 :1300-1306. (IF=1.193)

    [42] 赵忠奎,乔卫红,王秀娜,李宗石*, β-甲基萘的长链烷基化产物的毛细管气相色谱-质谱分析.分析测试学报, 2003,22 (6):74-77.

    [43] 赵忠奎,乔卫红*,李宗石, Gemini表面活性剂.化学通报(网络版), 2012,65 (8):w059.

     

    二、专利

    [1] 赵忠奎、刘孟招, 一种自支撑金属磷化物纳微结构电极材料及其制备方法和应用, CN202110793354.6.

    [2] 赵忠奎、李仁志、李宇、陈广涛, 一类1-氨基-2-乙酰基蒽醌及其衍生物的合成新工艺, CN201210006848.6。

    [3]赵忠奎、张雪,一类光解水产氢用双金属单原子修饰的半导体光催化剂的制备方法, CN202210623634.7

    [4]赵忠奎、孙厚刚,一种用于选择合成6-酰基-2-甲氧基萘的改性纳米Hβ沸石催化剂的制备方法,CN202210627971.3.

    [5] 赵忠奎、魏晓静、郭洪臣. 一种整体式改性泡沫纳米碳基催化剂及其制备方法和应用。 CN202210296941.9 







     



  • No content