![]() |
个人信息Personal Information
副教授
硕士生导师
性别:男
毕业院校:大连理工大学
学位:博士
所在单位:工程力学系
学科:固体力学. 计算力学. 工程力学
联系方式:+86-13478903211
电子邮箱:zldu@dlut.edu.cn
个人简介Personal Profile
杜宗亮,工学博士,副教授,硕士生导师。入选大连理工大学第五批“星海青千引进计划”。
当前研究兴趣为固体力学、计算力学及前沿交叉领域,包括:结构优化、拓扑力学、基于机器学习的建模与力学分析、非光滑力学等。在固体力学旗舰期刊Journal of the Mechanics of Physics and Solids, 计算力学旗舰期刊Computers and Methods in Applied Mechanics and Engineering, 应用物理旗舰期刊Physical Review Letters等杂志发表SCI论文40余篇,英文书章1章,谷歌学术引用1300余次。
曾获得亚洲结构与多学科优化学会青年科学家奖(ACSMO Young Scientist Award),大连市青年科技之星,大连理工大学青年教师讲课竞赛二等奖、运载工程与力学学部青年教师讲课竞赛一等奖等。
工作经历
2020.1 - 至今 大连理工大学 工程力学系 副教授
2019.1 - 2019.12 密苏里大学哥伦比亚校区 机械航天系 博士后研究员(合作导师:Guoliang Huang 教授)
2017.1 - 2018.12 加州大学圣地亚哥校区 结构工程系 博士后研究员(合作导师:H. Alicia Kim 教授)
教育经历
2009.9 - 2016.12 大连理工大学 工程力学系 工学博士(导师:郭旭 教授)
2005.9 - 2009.6 大连理工大学 工程力学系 工学学士
招收硕士研究生专业
固体力学、计算力学、工程力学
欢迎力学、物理、机械、计算机、数学等相关方向同学加入课题组共同奋斗!
学术兼职
· 《力学进展》青年编委(2020-2025)
· 《应用力学学报》青年编委(2022-2024)
· 《SN Applied Sciences》编委(2021-)
· 《Frontiers in Physics》review editor(2021-)
· 美国数学学会Mathematical Reviews评论员
· Computers and Methods in Applied Mechanics and Engineering, Structural and Multidisciplinary Optimization, Additive Manufacturing, Materials & Design, Proceedings of the Royal Society A, Journal of Mechanical Design-ASME, Composite Structures, Wave Motion, Acta Mechanica Sinica等学术期刊审稿人
主讲课程
Mechanics of Plates and Shells 本科生 英语授课 48学时
科研项目
· 国家自然科学基金青年项目,基于结构拓扑优化的最优力学拓扑绝缘体设计,2021-2023,主持
· 航空科学基金,基于显式拓扑优化框架的智能柔性结构设计理论与方法,2020-2022,主持
· 大连市高层次人才创新支持计划(青年科技之星),三维力学拓扑绝缘体优化设计及波动调控,2021-2022,主持
· 技术开发项目,兆瓦级海上风机主承载部件减重拓扑优化设计,2022-2024,主持
· 技术开发项目,空气舵快速设计优化软件,2020-2022,主持
· 大连理工大学引进人才专题,基于机器学习的最优力学拓扑绝缘体设计,2020-2022,主持
· 国家重点研发计划,结构拓扑优化核心算法研究与集成,2020-2023,参与
学术论文(*代表通讯作者,#代表共同第一作者)
· G. Su, Z. Du, P. Jiang, Y. Liu*. High-efficiency wavefront manipulation in thin plates using elastic metasurfaces beyond the generalized Snell’s law. Mech. Syst. Signal Process., 179(2022), 109391.
· X. Jiang, C. Liu*, Z. Du, W. Huo, X. Zhang, F. Liu, X. Guo*. A unified framework for explicit layout/topology optimization of thin-walled structures based on Moving Morphable Components (MMC) method and adaptive ground structure approach. Comput. Methods Appl. Mech. Engrg., 396(2022), 115047.
· L. Li, C. Liu*, Z. Du, W. Zhang, X. Guo*. A meshless moving morphable component-based method for structural topology optimization without weak material. Acta Mech. Sin., 38(2022), 421445.
· J. Li, Y. Zhang*, Z. Du, C. Liu, W. Zhang, X Guo, X. Guo*. A moving morphable component-based topology optimization approach considering transient structural dynamic responses. Int. J. Numer. Methods Engrg., 123(2022), 705-728.
· T. Cui, Z. Du*, C. Liu, Z. Sun, X. Guo*. Explicit topology optimization with moving morphable component (MMC) introduction mechanism. Acta Mech. Solida Sin., 35(2022), 384–408.
· W. Huo, C. Liu*, Z. Du, X. Jiang, Z. Liu, X. Guo*. Topology optimization on complex surfaces based on the moving morphable component (MMC) method and computational conformal mapping (CCM). J. Appl. Mech., 89(2022), 051008.
· Z. Du, T. Cui, C. Liu, W. Zhang, Y. Guo, X. Guo*. An efficient and easy-to-extend Matlab code of the Moving Morphable Component (MMC) method for three-dimensional topology optimization. Struct. Multidisc. Optim., 65(2022), 158.
· J. Luo, Z. Du*, Y. Guo, C. Liu, W. Zhang, X. Guo*. Multi-class, multi-functional design of photonic topological insulators by rational symmetry-indicators engineering. Nanophotonics, 10(2021), 4523-4531.
· X. Guo*, Z. Du, C. Liu, S. Tang. A new uncertainty analysis-based framework for data-driven computational mechanics. J. Appl. Mech., 88(2021), 111003.
· L. Lin, C. Liu*, W. Zhang, Z. Du, X. Guo*. Combined model-based topology optimization of stiffened plate structures via MMC approach. Int. J. Mech. Sci., 208(2021), 106682.
· H. Chung*, Z. Du. Optimized design of multi-material cellular structures by level-set method with Guyan reduction. J. Mech. Des., 143(2021), 101702.
· J. Luo, Z. Du*, C. Liu*, Y. Mei, W. Zhang, X. Guo. Moving morphable components-based inverse design formulation for quantum valley/spin hall insulators. Extreme Mech. Lett., 45(2021), 101276.
· C. Liu, Z. Du*, W. Zhang, X. Zhang, Y. Mei, X. Guo*. Design of optimized architected structures with exact size and connectivity via an enhanced multidomain topology optimization strategy. Comput. Mech., 67(2021), 743-762.
· Y. Mei, Z. Du, D. Zhao, W. Zhang, C. Liu*, X. Guo*. Moving morphable inclusion approach: an explicit framework to solve inverse problem in elasticity. J. Appl. Mech., 88(2021), 041001.
· Z. Du#, G. Zhang#, T. Guo, S. Tang*, X. Guo*. Tension-compression asymmetry at finite strains: A theoretical model and exact solutions. J. Mech. Phys. Solids, 143(2020), 104084.
· C. Liu, Z. Du*, Y. Zhu, W. Zhang, X. Zhang, X. Guo*. Optimal design of shell-graded-infill structures by a hybrid MMC-MMV approach. Comput. Methods Appl. Mech. Engrg., 369(2020), 113187.
· X. Xu#, C. Wang#, W. Shou#, Z. Du, Y. Chen, B. Li, W. Matusik, N. Hussein*, G. Huang*. Physical realization of elastic cloaking with a polar material. Phys. Rev. Lett., 124(2020), 114301.
· L. Li*, Z. Du, H. A. Kim. Design of architected materials for thermoelastic macrostructures using level set method. JOM, 72(2020), 1734-1744.
· Z. Du#, H. Chen#, G. Huang*. Optimal quantum valley Hall insulators by rationally engineering Berry curvature and band structure. J. Mech. Phys. Solids, 135(2020), 103784.
· X.-Y. Zhou*, Z. Du, H. A. Kim. A level set shape metamorphosis with mechanical constraints for geometrically graded microstructures. Struct . Multidisc. Optim., 60(2019), 1-16.
· Y. Zhu, S. Li, Z. Du, C. Liu, X. Guo*, W. Zhang*. A novel asymptotic-analysis-based homogenisation approach towards fast design of infill graded microstructures. J. Mech. Phys. Solids, 124(2019), 612-633.
· Z. Du, W. Zhang, Y. Zhang, R. Xue, X. Guo*. Structural topology optimization involving bi-modulus materials with asymmetric properties in tension and compression. Comput. Mech., 63(2019), 335-363.
· R. Xue, C. Liu, W. Zhang, Y. Zhu, S. Tang, Z. Du*, X. Guo*. Explicit structural topology optimization under finite deformation via Moving Morphable Void (MMV) approach. Comput. Methods Appl. Mech. Engrg., 344(2019), 798-818.
· X. Lei, C. Liu*, Z. Du, W. Zhang, X. Guo*. Machine learning-driven real-time topology optimization under moving morphable component-based framework. J. App. Mech., 86(2019), 011004.
· C. Liu, Y. Zhu, Z. Sun, D. Li, Z. Du*, W. Zhang, X. Guo*. An efficient moving morphable component (MMC)-based approach for multi-resolution topology optimization. Struct . Multidisc. Optim., 58(2018), 2455-2479.
· Z. Du*, X.-Y. Zhou, R. Picelli, H. A. Kim. Connecting microstructures for multiscale topology optimization with connectivity index constraints. J. Mech. Des.-Special Issue, 140(2018), 111417.
· W. Zhang*, Y. Liu, Z. Du, Y. Zhu, X. Guo*. A moving morphable component based topology optimization approach for rib-stiffened structures considering buckling constraints. J. Mech. Des. - Special Issue, 140(2018), 111404.
· J. Du, Z. Du*, Y. Wei, W. Zhang, X. Guo*. Exact response bound analysis of truss structures via linear mixed 0‐1 programming and sensitivity bounding technique.Int. J. Numer. Methods Engrg., 116(2018), 21-42.
· Z. Sun#, T. Cui#, Y. Zhu, W. Zhang, S. Shi, S. Tang, Z. Du, C. Liu, R. Cui, H. Chen, X. Guo*. The mechanical principles behind the golden ratio distribution of veins in plant leaves. Sci. Rep., 8(2018), 13859.
· W. Zhang, D. Li, J. Zhou, Z. Du, B. Li, X. Guo*. A moving morphable void (MMV)-based explicit approach for topology optimization considering stress constraints. Comput. Methods Appl. Mech. Engrg., 334(2018), 381-413.
· W. Zhang, J. Song, J. Zhou, Z. Du, Y. Zhu, Z. Sun, X. Guo*. Topology optimization with multiple materials via moving morphable component (MMC) method. Int. J. Numer. Methods Engrg., 113(2018), 1653-1675.
· R. Xue, R. Li, Z. Du*, W. Zhang, Y. Zhu, Z. Sun, X. Guo*. Kirigami pattern design of mechanically driven formation of complex 3D structures through topology optimization. Extreme Mech. Lett., 15(2017), 139-144.
· X. Guo*, J. Zhou, W. Zhang*, Z. Du, C. Liu, Y. Liu. Self-supporting structure design in additive manufacturing through explicit topology optimization. Comput. Methods Appl. Mech. Engrg., 323(2017), 27-63.
· C. Liu, Z. Du, W. Zhang, Y. Zhu, X. Guo*. Additive manufacturing-oriented design of graded lattice structures through explicit topology optimization. J. Appl. Mech., 84(2017), 081008.
· W. Zhang, Z. Du, G. Sun, X. Guo*. A level set approach for damage identification of continuum structures based on dynamic responses. J. Sound. Vib., 386(2017), 100-115.
· Z. Du, Y. Zhang, W. Zhang, X. Guo*. A new computational framework for materials with different mechanical responses in tension and compression and its applications. Int. J. Solids Struct., 100-101(2016), 54-73.
· Z. Du, X. Guo*. Symmetry analysis for structural optimization problems involving reliability measure and bi-modulus materials. Struct. Multidisc. Optim., 53(2016), 973-984.
· C. Liu, Z. Du, Z. Sun, H. Gao, X. Guo*. Frequency-preserved acoustic diode model with high forward-power-transmission rate. Phys. Rev. Applied, 3(2015), 064014.
· D. Yang*, G. Chen, Z. Du. Direct kinematic method for exactly constructing influence lines of forces of statically indeterminate structures. Struct. Eng. Mech., 54(2015), 793-807.
· Z. Du, X. Guo*. Variational principles and the related bounding theorems for bi-modulus materials. J. Mech. Phys. Solids, 73(2014), 183-211.
· X. Guo*, Z. Du, G. Cheng. A confirmation of a conjecture on the existence of symmetric optimal solution under multiple loads. Struct. Multidisc. Optim., 50(2014), 659-661.
· X. Guo*, Z. Du, G. Cheng*, C. Ni. Symmetry properties in structural optimization: some extensions. Struct. Multidisc. Optim., 47(2013), 783-794.
· X. Guo*, C. Ni, G. Cheng*, Z. Du. Some symmetry results for optimal solutions in structural optimization. Struct. Multidisc. Optim., 46(2012), 631-645.
专著书章
· X. Guo*, W. Zhang, Z. Du. Topology Optimization Based on Explicit Geometry Description, in Encyclopedia of Continuum Mechanics, Springer-Verlag, 2020.