• 更多栏目

    高飞

    • 教授     博士生导师   硕士生导师
    • 主要任职:物理学院副院长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:物理学院
    • 学科:等离子体物理
    • 电子邮箱:fgao@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Ion energy and angular distributions in planar Ar/O-2 inductively coupled plasmas: hybrid simulation and experimental validation

    点击次数:

    论文类型:期刊论文

    发表时间:2019-07-17

    发表刊物:JOURNAL OF PHYSICS D-APPLIED PHYSICS

    收录刊物:SCIE、EI

    卷号:52

    期号:29

    ISSN号:0022-3727

    关键字:inductively coupled plasma; ion energy distribution; ion angular distribution; hybrid simulation; experimental validation

    摘要:A hybrid model, which consists of a fluid module, a sheath module and an ion Monte Carlo module, is employed to investigate the dependence of ion energy and angular distributions (IEDs and IADs) on the inductively coupled plasma (ICP) power, pressure, gas ratio, bias power and bias frequency in Ar/O-2 discharges. The results indicate that the bimodal distribution appears as bias power increases or bias frequency decreases. Moreover, the low and high energy peaks of IEDs move to higher energy with the rise of bias power and O-2 content. Whereas, an opposite tendency is observed with the increase of ICP power and pressure. For IADs, it is clear that a larger percentage of ions incident on the electrode have a smaller deflection angle by increasing bias power or decreasing pressure, and a similar evolution is observed with the decline of bias frequency. Besides, the better collimation of ions is obtained at larger O-2 concentration, but ICP power only has little influence on IADs. In order to validate the model, a comparison between the simulated IEDs and those measured by a retarding field energy analyzer has been done, and shows a good agreement. The results obtained in this work could help us to gain more insight into the dependence of IEDs and IADs on the discharge parameters, which is of significant importance in the improvement of the etching rate and anisotropy.