关水

个人信息Personal Information

副教授

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:化工学院

学科:化学工程. 生物医学工程. 生物化工

办公地点:大连理工大学化工学院化工实验楼D413

联系方式:139玖捌伍肆捌柒壹柒

电子邮箱:guanshui@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Mechanism Study of Bacteria Killed on Nanostructures

点击次数:

论文类型:期刊论文

发表时间:2019-10-17

发表刊物:The journal of physical chemistry. B

收录刊物:PubMed

卷号:123

期号:41

页面范围:8686-8696

ISSN号:1520-5207

摘要:It is important to study the bactericidal mechanism with nanostructures for the design and preparation of high-efficiency sterilization materials. In this paper, the interfacial energy gradient between cells and nanopillars is proposed to be the driving force to promote cells to migrate into nanostructures and get killed. The expressions of interfacial energy and its gradient were first established, then the deformation of cells pressured by nanostructures was calculated. The results show that the interfacial energy gradient or the pressure on cells is influenced by nanopillar parameters substantially. The smaller the nanopillar diameter and the larger the pitch, the greater the pressure on cells. Only high enough nanocolumns can ensure sufficient cell creep deformation and become punctured. Furthermore, a cell volume and its adhesion morphology also influence the interaction between cells and nanostructures. The smaller the cell volume, the greater the pressure on it. And the larger the contact angle of adhered cells, the greater the pressure on the cells by nanopillars. Besides, the wettability of substrate material also influences the interaction between cells and nanopillars. It can be concluded that the model is reasonable and reliable since its calculation results are in good accordance with the experimental measurements.