大连理工大学  登录  English 
覃开蓉
点赞:

教授   博士生导师   硕士生导师

主要任职: 医学部党委书记兼常务副部长

性别: 男

毕业院校: 复旦大学

学位: 博士

所在单位: 生物医学工程学院

学科: 生物医学工程

电子邮箱: krqin@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
A high-throughput microfluidic device for probing calcium dynamics of single cells squeezing through narrow channels

点击次数:

论文类型: 期刊论文

发表时间: 2019-11-01

发表刊物: JOURNAL OF MICROMECHANICS AND MICROENGINEERING

收录刊物: SCIE

卷号: 29

期号: 11

ISSN号: 0960-1317

关键字: intracellular calcium response; dynamic mechanical stimuli; mechanotransduction; cancer cell phenotype; microfluidic device

摘要: To probe intracellular calcium response while single cells squeeze through narrow channels, we built a high-throughput microfluidic device where single cells can be trapped efficiently and stimulated mechanically. With this device, dozens of single cells' dynamic morphologies and intracellular [Ca2+] responses under dynamic mechanical stimuli can be monitored simultaneously. We observed a two-peak [Ca2+] response, which was closely coupled together with the dynamic cellular squeezing process. This type of [Ca2+] response, to our knowledge, was observed for the first time. We also investigated the role of the cytoskeleton in the [Ca2+] response and found that the cytoskeleton was an important regulator of [Ca2+] signaling during the cellular squeezing process. In addition, we investigated the difference between the two-peak [Ca2+] responses of Hela cells and HUVECs and found that one characteristic parameter could distinguish Hela cells from HUVECs.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学