• 更多栏目

    李涛

    • 副教授     博士生导师   硕士生导师
    • 性别:女
    • 毕业院校:哈尔滨工业大学
    • 学位:博士
    • 所在单位:机械工程学院
    • 学科:机械设计及理论. 工业工程. 机械制造及其自动化
    • 办公地点:机械楼8027室
    • 联系方式:18941330991
    • 电子邮箱:litao@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Life Cycle Assessment-based Comparative Evaluation of Originally Manufactured and Remanufactured Diesel Engines

    点击次数:

    论文类型:期刊论文

    发表时间:2014-08-01

    发表刊物:JOURNAL OF INDUSTRIAL ECOLOGY

    收录刊物:SCIE、EI

    卷号:18

    期号:4,SI

    页面范围:567-576

    ISSN号:1088-1980

    关键字:diesel engine; energy consumption; environmental impacts; industrial ecology; life cycle assessment (LCA); remanufacturing

    摘要:Life cycle assessment (LCA) enables us to estimate potential resource and energy consumption as well as environmental emissions resulting from various activities within our economy. The present LCA intends to analyze the energy consumption and environmental emissions of the entire life cycle of an originally manufactured diesel engine compared with its remanufactured counterpart. Further, the article attempts to identify the processes in diesel engine manufacturing and remanufacturing life cycles that contribute most to energy consumption and environmental impacts. Six environmental impacts were assessed in this study: global warming potential (GWP); acidification potential (AP); eutrophication potential (EP); ozone depletion potential (ODP); photochemical ozone creation potential (POCP); and abiotic depletion potential (ADP). The results show that diesel engine remanufacturing could reduce 66% of energy consumption, compared to original manufacturing. The greatest benefit related to environmental impact is with regard to ODP, which is reduced by 97%, followed by EP, GWP, POCP, AP, and ADP, which can be reduced by 79%, 67%, 32%, 32%, and 25%, respectively. In the life cycle of diesel engine manufacturing, production of materials brings about larger environmental impacts, especially with regard to EP and ODP, whereas transportation of materials contributes most to POCP. The situation is similar for diesel engine remanufacturing. Production of materials brings about larger environmental impacts with regard to AP, EP, and ODP, whereas components remanufacturing and production of materials exhibit the same amount of GWP impact. Further, in remanufacturing, the reverse logistics of old diesel engines brings about lesser environmental impacts than the other life cycle stages, except with regard to POCP.