• 更多栏目

    刘宇博

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:化工海洋与生命学院
    • 学科:生物化学与分子生物学. 生物化工. 化学生物学
    • 办公地点:大连理工大学 盘锦校区 生命与医药学院 F03-314
    • 联系方式:liuyubo@dlut.edu.cn
    • 电子邮箱:liuyubo@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    O-GlcNAc elevation through activation of the hexosamine biosynthetic pathway enhances cancer cell chemoresistance.

    点击次数:

    论文类型:期刊论文

    发表时间:2018-01-01

    发表刊物:Cell death & disease

    收录刊物:PubMed、SCIE、Scopus

    卷号:9

    期号:5

    ISSN号:2041-4889

    摘要:Chemoresistance has become a major obstacle to the success of cancer therapy, but the mechanisms underlying chemoresistance are not yet fully understood. O-GlcNAcylation is a post-translational modification that is regulated by the hexosamine biosynthetic pathway (HBP) and has an important role in a wide range of cellular functions. Here we assessed the role of O-GlcNAcylation in chemoresistance and investigated the underlying cellular mechanisms. The results showed that the HBP has an important role in cancer cell chemoresistance by regulating O-GlcNAcylation. An increase in the levels of O-GlcNAcylation indicates an increased resistance of cancer cells to chemotherapy. Acute treatment with doxorubicin (DOX) or camptothecin (CPT) induced O-GlcNAcylation through HBP activation. In fact, the chemotherapy agents activated the AKT/X-box-binding protein 1 (XBP1) axis and then induced the HBP. Furthermore, the observed elevation of cellular O-GlcNAcylation led to activation of survival signalling pathways and chemoresistance in cancer cells. Finally, suppression of O-GlcNAcylation reduced the resistance of both established and primary cancer cells to chemotherapy. These results provide significant novel insights regarding the important role of the HBP and O-GlcNAcylation in regulating cancer chemoresistance. Thus, O-GlcNAc inhibition might offer a new strategy for improving the efficacy of chemotherapy.