李耀鹏

个人信息Personal Information

副教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:工程热物理

办公地点:能源与动力学院809室

电子邮箱:liyaopeng@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Effect of piston bowl geometry and compression ratio on in-cylinder combustion and engine performance in a gasoline direct-injection compression ignition engine under different injection conditions

点击次数:

论文类型:期刊论文

发表时间:2021-07-01

发表刊物:APPLIED ENERGY

卷号:280

ISSN号:0306-2619

关键字:Partially premixed combustion (PPC); Homogeneous charge compression ignition (HCCI); Transition; Fuel stratification; Piston geometry; Compression ratio

摘要:Low temperature combustion (LTC) of high-octane number fuels in compression ignition engines offers an opportunity to simultaneously achieve high engine thermal efficiency and low emissions of NOx and particulate matter without using expensive after-treatment technologies. LTC engines are known to be sensitive to the operation conditions and combustor geometry. It is important to understand the fundamental flow and combustion physics in order to develop the technology further for commercial application. A joint numerical and experimental investigation was conducted in a heavy-duty compression ignition engine using a primary reference fuel with an octane number of 81 to investigate the effects of injection timing, piston geometry, and compression ratio (CR) on the fuel/air mixing and combustion covering different regimes of LTC engines, homogeneous charge compression ignition (HCCI), partially premixed combustion (PPC), and the transition regime from HCCI to PPC. The results show that with the same combustion timing, a higher CR leads to a lower NOx, but a higher emission of UHC and CO. The piston geometry shows a significant impact on the combustion and emission process in the transition regime while it has minor influence in the HCCI and PPC regimes. It is found that high engine efficiency and low emissions of NOx, CO and UHC can be achieved in the earlier PPC regime and later transition regime. The fundamental reason behind this is the stratification of the mixture in composition, temperature and reactivity, which is dictated by the interaction between the spray and the cylinder/piston walls.