宋永臣

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:能源与动力学院

学科:能源与环境工程

办公地点:能动大楼810

联系方式:songyc@dlut.edu.cn

电子邮箱:songyc@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Adsorption isotherms and kinetics of carbon dioxide on Chinese dry coal over a wide pressure range

点击次数:

论文类型:期刊论文

发表时间:2015-02-01

发表刊物:10th Brazilian Meeting on Adsorption (EBA)

收录刊物:SCIE、EI、CPCI-S、Scopus

卷号:21

期号:1-2,SI

页面范围:53-65

ISSN号:0929-5607

关键字:Adsorption isotherms; Thermodynamic model; Kinetics; Diffusivity

摘要:A gravimetric method with in situ density measurement is used to determine the adsorption isotherms and kinetic characteristics of CO2 on Chinese dry coal plug at 293.29, 311.11, 332.79 and 352.57 K and pressures up to 19 MPa. The adsorption and desorption process is reversible, which shows that it is a process of physical adsorption for CO2 on coal. The excess adsorption increases with the increasing pressure at low pressures until the CO2 phase transitions pressure is reached. Above this pressure, the excess adsorption decreases with the increasing pressure. The adsorption behaviour is described using the CO2 density instead of pressure in four thermodynamic models such as modified Langmuir, Langmuir + k, DR and DR + k. It is found that the modified Langmuir + k and DR + k models are more suitable for liquid and supercritical CO2 adsorption, respectively. The adsorption kinetics data are also obtained during the measurement of adsorption isotherms. The experimental data are fluctuant at the initial time range due to the temperature variation in the adsorption cell after high-pressure CO2 is injected. The diffusivity is estimated using a modified unipore model. It is observed that the kinetic parameter C, accounting for the effect of gas diffusivity, increases with the increasing pressure at low pressures and has no obvious relations with pressure at high pressures. In this study, C value has no dependencies with temperature for CO2, and the order of magnitude of the effective diffusivity is approximately 10(-5) to 10(-4) s(-1).