扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 石勇 ( 副教授 )

    的个人主页 http://faculty.dlut.edu.cn/sys99/zh_CN/index.htm

  •   副教授   硕士生导师
  • 任职 : Royal Society of Chemistry(RSC)会员,Journal of Physics and Chemistry of Solids;Journal of Alloys and Compounds;《环境科学与技术》,《化学反应工程与工艺》等杂志特约审稿人。
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
Mutual benefits of acetate and mixed tungsten and molybdenum for their efficient removal in 40 L microbial electrolysis cells

点击次数:
论文类型:期刊论文
发表时间:2019-10-01
发表刊物:WATER RESEARCH
收录刊物:SCIE、EI、PubMed
卷号:162
页面范围:358-368
ISSN号:0043-1354
关键字:Scaled microbial electrolysis cell; Simultaneous removal of acetate; W(VI) and Mo(VI); Bacterial community; Bioanode and biocathode
摘要:Practical application of metallurgical microbial electrolysis cells (MECs) requires efficient removal of metals and organics in larger reactors. A 40 L cylindrical single-chamber MEC fed acetate was used to achieve high removals of W(VI) and Mo(VI). In the presence of both metals, there were nearly complete removals of W (97 - 98%), Mo (98 - 99%), and acetate (95 - 96%), along with a low level of hydrogen production (0.0037-0.0039 L/L/d) at a hydraulic residence time (HRT) of 2 d (influent ratios of W:Mo:acetate of 0.5:1.0:24 mM). The final concentrations of these conditions were sufficient to meet national wastewater discharge standards. In the controls with individual metals or acetate, lower contaminant removals were obtained (W, 2 -4%; Mo, 3 - 5%, acetate, 36 - 39%). Metals removal in all cases was primarily due to the biocathodes rather than the bioanodes. The presence of metals decreased microbial diversity on the anodes and increased diversity on the cathodes, based on analysis at the phylum, class and genus levels, as a function of HRT and influent concentration. This study demonstrated the feasibility of larger-scale single-chamber MECs for efficient treatment of W and Mo, moving metallurgical MECs closer to commercialization for wastewater treatment of these two metals. (C) 2019 Elsevier Ltd. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学