• 更多栏目

    唐山

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:新加坡国立大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:固体力学. 计算力学. 材料学
    • 办公地点:力学楼303-1
    • 联系方式:18723558261
    • 电子邮箱:shantang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    In situ TEM investigation on void coalescence in metallic materials

    点击次数:

    论文类型:期刊论文

    发表时间:2018-09-12

    发表刊物:MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING

    收录刊物:SCIE

    卷号:734

    页面范围:260-268

    ISSN号:0921-5093

    关键字:Void coalescence; Nanotwins; Shear bands; Multiscale model

    摘要:More precise modeling on ductile fracture of metals at the scale from micron to meter is still urgently needed in many engineering applications. Due to the variety of metal and its alloys, a lack of understanding on the mechanisms and quantitative experimental data impede building and assessing mechanics models for ductile fracture at different length scales. In this paper, in situ tensile tests are carried out in Transmission Electronic Microscope (TEM) on copper, high entropy alloy and aluminium alloy. We examine the full process of void growth and coalescence of neighboring voids under the view of the TEM. Nanotwins on the ligament between neighboring voids lead to a new coalescence mechanism for copper and high entropy alloy. Necking and shearing coalescence of aluminium alloys are clearly illustrated, which are demonstrated by the samples with manually drilled hole before by SEM (Scanning Electronic Microscope). The quantitative data on the evolution of void geometry are recorded, and are then used to verify the existing coalescence models in the literature. It is found that the McClintock model for void coalescence provides a better prediction than the Brown-Embury model (including the modified Brown-Embury model). A multiscale homogenization framework for in situ experiments can be further used to extract the stress state around the voids, and explaining the importance of stress-state on cavitation/nucleation, growth and coalescence of voids.