• 更多栏目

    张伟

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:利兹大学
    • 学位:博士
    • 所在单位:力学与航空航天学院
    • 学科:工程力学. 生物与纳米力学. 材料物理与化学
    • 办公地点:力学系楼303
    • 联系方式:wei.zhang@dlut.edu.cn; 微信:texwzh
    • 电子邮箱:wei.zhang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    Shape optimization of energy storage flywheel rotor

    点击次数:

    论文类型:期刊论文

    发表时间:2017-02-01

    发表刊物:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

    收录刊物:SCIE、EI、ESI高被引论文

    卷号:55

    期号:2

    页面范围:739-750

    ISSN号:1615-147X

    关键字:Flywheel; Energy storage; Rotor; Geometry; Shape optimization

    摘要:A flywheel plays an important role in storing energy in modern machine systems. Flywheels can store rotational energy at a high rotating speed and have the ability to deliver a high output power if the system needs a stored energy to overcome a sudden loading or keep rotating for an expected long time. The energy density (stored energy per unit mass) and the amount of rotational energy are the two essential parameters to evaluate the performance of energy storage flywheels. In order to improve the energy storage capability of flywheels, parametric geometry modeling and shape optimization method for optimizing the flywheel rotor geometry is proposed in the present paper. We first build the shape optimization model of flywheel by parametric geometry modeling method with the objective to maximize the energy density of a flywheel rotor. Then the downhill simplex method is adopted to solve the nonlinear optimization problem in multidimensional space. Finally, we obtain the optimized shapes of flywheel rotor which could significantly improve the energy storage capability and working safety performance compared with the traditional design flywheel of constant thickness rotor. It is found that the maximum structural stress constraint applied in the designed region has a remarkable effect on the shape optimization.