大连理工大学  登录  English 
刘永新
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 物理学院

学科: 等离子体物理

办公地点: 大连理工大学三束材料改性教育部重点实验室3号楼201室

电子邮箱: yxliu129@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: Yong >> 科学研究 >> 论文成果
Measurements of argon metastable density using the tunable diode laser absorption spectroscopy in Ar and Ar/O-2

点击次数:

论文类型: 期刊论文

发表时间: 2018-06-01

发表刊物: CHINESE PHYSICS B

收录刊物: SCIE

卷号: 27

期号: 6

ISSN号: 1674-1056

关键字: argon metastable states; tunable diode laser absorption spectroscopy; capacitively coupled plasmas

摘要: Densities of Ar metastable states 1s(5) and 1s(3) are measured by using the tunable diode laser absorption spectroscopy (TDLAS) in Ar and Ar/O-2 mixture dual-frequency capacitively coupled plasma (DF-CCP). We investigate the effects of high-frequency (HF, 60 MHz) power, low-frequency (LF, 2 MHz) power, and working pressure on the density of Ar metastable states for three different gas components (0%, 5%, and 10% oxygen mixed in argon). The dependence of Ar metastable state density on the oxygen content is also studied at different working pressures. It is found that densities of Ar metastable states in discharges with different gas components exhibit different behaviors as HF power increases. With the increase of HF power, the metastable density increases rapidly at the initial stage, and then tends to be saturated at a higher HF power. With a small fraction (5% or 10%) of oxygen added in argon plasma, a similar change of the Ar metastable density with HF power can be observed, but the metastable density is saturated at a higher HF power than in the pure argon discharge. In the DF-CCP, the metastable density is found to be higher than in a single frequency discharge, and has weak dependence on LF power. As working pressure increases, the metastable state density first increases and then decreases, and the pressure value, at which the density maximum occurs, decreases with oxygen content increasing. Besides, adding a small fraction of oxygen into argon plasma will significantly dwindle the metastable state density as a result of quenching loss by oxygen molecules.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学