大连理工大学  登录  English 
赵纪军
点赞:

教授   博士生导师   硕士生导师

任职 : 三束材料改性教育部重点实验室主任

性别: 男

毕业院校: 南京大学

学位: 博士

所在单位: 物理学院

学科: 凝聚态物理

电子邮箱: zhaojj@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

Point defects in group III nitrides: A comparative first-principles study

点击次数:

论文类型: 期刊论文

发表时间: 2019-06-07

发表刊物: JOURNAL OF APPLIED PHYSICS

收录刊物: SCIE、EI

卷号: 125

期号: 21

ISSN号: 0021-8979

关键字: Aluminum nitride; Binary alloys; Calculations; Density functional theory; Energy gap; Gallium nitride; III-V semiconductors; Nitrides; Point defects; Semiconductor devices; Semiconductor doping; Time varying systems, Defect configurations; Diffusion properties; Donor and acceptor; First-principles study; Migration barriers; Native point defects; Self-compensation effects; Wide-bandgap semiconductor devices, Wide band gap semiconductors

摘要: One of the main challenges in the development of wide bandgap semiconductor devices is to understand the behavior of defects and avoid their harm. Using density-functional theory calculations with hybrid functional, we systematically investigated the neutral and charged native point defects (vacancy, interstitial, and antisite defect) in GaN, AlN, and InN crystals in terms of local geometry relaxation, formation energies, and electronic and diffusion properties. By comparing the defect configuration and transition levels as a function of the Fermi level, we show that Ga interstitial (Ga-oc, Ga-te) in GaN, N vacancy (V-N), N interstitial (N-i), In antisite (In-N), and In interstitial (In-te, In-oc) in InN can exist stably only in the positive charge states with donor level and V-In is stable in the neutral state, while the other defects exhibit both donor and acceptor behavior. Among them, the most stable defects are identified as V-N for p-type nitrides and V-Ga, V-Al for n-type nitrides. These results, providing a mechanism for self-compensation effects, explain the reduced doping efficiencies for both n-type and p-type nitrides due to defects. Moreover, it is also demonstrated that N interstitial diffuses faster than vacancy, which are mainly responsible for the low concentration of N interstitials and N-based defect complexes produced in nitrides. Significantly, the trends of formation energy, transition level, and migration barrier of nitrides are also consistent with their intrinsic atomic size and bandgap. Our study is important for the identification and control of point defects in nitrides, which have a profound impact on device performance and reliability.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学