扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 王治宇 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/zywang/zh_CN/index.htm

  •   教授   博士生导师   硕士生导师
论文成果 当前位置: 王治宇 >> 科学研究 >> 论文成果
Nitrogen-rich carbon coupled multifunctional metal oxide/graphene nanohybrids for long-life lithium storage and efficient oxygen reduction

点击次数:
论文类型:期刊论文
发表时间:2015-03-01
发表刊物:NANO ENERGY
收录刊物:SCIE、EI
卷号:12
页面范围:578-587
ISSN号:2211-2855
关键字:Nitrogen-rich carbon; Graphene; Metal oxide; Lithium ion batteries; Oxygen reduction reaction
摘要:Graphene-based nanohybrids are very appealing materials for energy storage and conversion applications. Strong binding of nanostructured guest materials with favorable properties and coupling effect to graphene is highly desirable to enhance the structural stability, interfacial characteristics and reaction kinetics of the nanohybrids. In this work, we present the fabrication of novel multifunctional nanohybrids by chemically coupling ultrafine metal oxide (e.g., Fe3O4) nanoparticles to reduced graphene oxide (rGO) with a thin layer of nitrogen-rich carbon (CNx) as 2D crosslinker. The combination and synergy of rGO and CNx layer with extremely high N content (59 wt%) modify the interfacial properties for homogenous and firm growth of Fe3O4 nanoparticles on rGO without compromising the intrinsic properties of rGO. When evaluated as anode materials in lithium-ion batteries, Fe3O4/CNx/rGO nanohybrids exhibit very long lifespan of 1000 cycles with high capacities at high current densities of 2-5 A g(-1), as well as excellent high-rate capability of up to 10 A g(-1). As a non-precious metal catalyst, these nanohybrids also exhibit comparable catalytic activity towards oxygen reduction reaction to commercial Pt/C catalyst in terms of high electron transfer number, high current density, good durability and methanol tolerance capability. (C) 2015 Elsevier Ltd. All rights reserved.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学