扫描手机二维码

欢迎您的访问
您是第 位访客

开通时间:..

最后更新时间:..

  • 冯恩民 ( 教授 )

    的个人主页 http://faculty.dlut.edu.cn/1964011016/zh_CN/index.htm

  •   教授
论文成果 当前位置: 中文主页 >> 科学研究 >> 论文成果
MODELLING AND OPTIMAL CONTROL FOR NONLINEAR MULTISTAGE DYNAMICAL SYSTEM OF MICROBIAL FED-BATCH CULTURE

点击次数:
论文类型:期刊论文
发表时间:2009-11-01
发表刊物:JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION
收录刊物:SCIE、Scopus
卷号:5
期号:4
页面范围:835-850
ISSN号:1547-5816
关键字:Nonlinear multistage system; Optimal control; Control parametrization; Fed-batch culture; Improved PSO algorithm
摘要:In this paper, we propose a new controlled multistate system to formulate the fed-batch culture process of glycerol bio-dissimilation to 1,3-propanediol (1,3-PD) by regarding the feeding rate of glycerol as a control function. Compared with the previous systems, this system doesn't take the feeding process as an impulsive form, but a time-continuous process, which is much closer to the actual culture process. Some properties of the above dynamical system are then proved. To maximize the concentration of 1,3-PD at the terminal time, we develop an optimal control model subject to our proposed controlled multistage system and continuous state inequality constraints. The existence of optimal control is proved by bounded variation theory. Through the discretization of the control space, the control function is approximated by piecewise constant functions. In this way, the optimal control model is approximated by a sequence of parameter optimization problems. The convergence analysis of this approximation is also investigated. Furthermore, a global optimization algorithm is constructed on the basis of the above descretization concept and an improved Particle Swarm Optimization (PSO) algorithm. Numerical results show that, by employing the optimal control policy, the concentration of 1,3-PD at the terminal time can be increased considerably.

 

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学