更多
论文成果
Study of the structural orientation and mechanical strength of the electrospun nanofibers from polymers with different chain rigidity and geometry
点击次数:
论文类型: 期刊论文
发表时间: 2018-03-01
发表刊物: POLYMER BULLETIN
收录刊物: SCIE、EI、Scopus
卷号: 75
期号: 3
页面范围: 947-962
ISSN号: 0170-0839
关键字: Aligned nanofibers; Structural orientation; Flexibility; Mechanical properties
摘要: Structure of nano amorphous matter has not been studied sufficiently yet due to the difficulty in both operation of nano matter and characterization of their structure. In this work, a detailed study of the structural orientation within amorphous polymeric nanofiber and its mechanical strength was conducted for a highly thermal resistant amorphous polymer: poly(phthalazinone ether ketone) (PPEK). Poly(butylene terephthalate) (PBT), a semi-crystalline polymer with partial difference in chain flexibility and geometry to PPEK, was chosen for a comparative discussion. For the method, highly aligned PPEK and PBT nanofiber bundles were prepared by electrospinning with a home-made book-like collecting device. X-ray experiments were conducted to research their structural orientation, and tension experiments were conducted to research their mechanical properties. It was found that the amorphous PPEK nanofibers showed relatively low orientation degree of polymer chain limited by its rigid and twisted segments within the polymer chain, while PBT nanofibers showed not only highly ordered crystal structure but also very large shish length, beneficial from the co-existence of rigid and flexible segments. The above structural information was well supported by their uniaxial tensile behaviors, where PBT nanofiber manifested much larger ultimate stress sigma, failure strain epsilon, Young's modulus E and toughness than those of PPEK nanofibers and commercial PBT plastic. However, the electrospun PBT nanofibers' orientation degree, within the range of 0.45-0.7, is much lower than that of some reported melt-spun PBT fibers with the orientation degree above 0.9. Therefore, it can be concluded that the instinct characterization of polymer chain and processing technique have a much more significant influence than size effect on the structural orientation and mechanical strength of nanofibers rather than size effect.

蹇锡高

教授   博士生导师   硕士生导师

性别: 男

毕业院校:大连工学院

学位: 硕士

所在单位:化工学院

学科:高分子材料. 高分子化学与物理. 膜科学与技术

联系方式:手机:13904286124

电子邮箱:jian4616@dlut.edu.cn

邮箱 : jian4616@dlut.edu.cn

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学
访问量: 手机版 English 大连理工大学 登录

开通时间:..

最后更新时间:..