大连理工大学  登录  English 
杨凤林
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连工学院

学位: 硕士

所在单位: 环境学院

电子邮箱: yangfl@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Wet air oxidation of pretreatment of pharmaceutical wastewater by Cu2+ and [PxWmOy](q-) co-catalyst system

点击次数:

论文类型: 期刊论文

发表时间: 2012-05-30

发表刊物: JOURNAL OF HAZARDOUS MATERIALS

收录刊物: SCIE、EI、PubMed、Scopus

卷号: 217

页面范围: 366-373

ISSN号: 0304-3894

关键字: Wet air oxidation; Pharmaceutical wastewater; Polyoxometalates catalyst

摘要: This study concentrates on the pretreatment of real wastewater using catalytic wet air oxidation (CWAO). WO3- and PO43- contained in fosfomycin pharmaceutical wastewater (FPW) and Cu2+ contained in berberine pharmaceutical wastewater (BPW) were studied as CWAO influent. Mixture of this two streams were reused to form Cu2+ and [PxWmOy](q-). namely polyoxometalates (POMs) as co-catalyst system to treat themselves. Experiments were conducted to investigate the effects of the initial oxygen pressure and temperature on the COD (chemical oxygen demand), TOC (total organic carbon) removal and biodegradable enhancement, it was discovered that over 40% of COD and TOC removal can be easily realized in an hour of WAO oxidation at 523 K, 1.4 MPa. The BOD5/COD (BOD5, biochemical oxygen demand in 5 days) of this two pharmaceutical mixture ascended from nonexistent to maximum 0.41 depends on the optimal FPW:BPW volume ratio 4:1, to compose POM co-catalyst system. Organic pollutants were incompletely oxidized to propionic acid and other intermediates. Some properties (e.g., TGA, IR, XRF) of POM catalyst separated from effluent, were obtained to provide additional information. (C) 2012 Elsevier B.V. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学