大连理工大学  登录  English 
杨凤林
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连工学院

学位: 硕士

所在单位: 环境学院

电子邮箱: yangfl@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
TiO2 and polyvinyl alcohol (PVA) coated polyester filter in bioreactor for wastewater treatment

点击次数:

论文类型: 期刊论文

发表时间: 2012-04-15

发表刊物: WATER RESEARCH

收录刊物: SCIE、EI、PubMed

卷号: 46

期号: 6

页面范围: 1969-1978

ISSN号: 0043-1354

关键字: Membrane bioreactor; Composite membrane; Fouling resistance; Hydrophilic modification; Dynamic contact angle

摘要: Prepared by coating TiO2/polyvinyl alcohol (PVA) on a low cost polyester filter cloth (22 pm), a composite membrane (10 mu m pore size) was successfully used in an anoxic/oxic membrane bioreactor (A/O-MBR) for treating a simulate wastewater in removing nitrate/ammonium for water reuse in a polyester fiber production plant. Its permeate flux and the anti-fouling properties against extracellular polymeric substances (EPS) were studied. Comparing with a commercial (0.1 mu m) PVDF (polyvinylidene fluoride) membrane, similar effluent qualities were achieved, meeting the basic COD requirements for reuse. Anti-EPS accumulation, the TiO2/PVA Polyester composite membrane had higher sustained permeability and required less frequent cleaning. Its filtration time was 4 times longer when operated at a higher flux than the PVDF membrane. The nano-TiO2 enhances the interaction between PVA and polyester, forms a more hydrophilic surface, drastically reduces the contact angle with water and reduces EPS fouling. The slow (trans-membrane pressure) TMP rise, loose cake layer, the low filtration resistances, and the EPS, SEM analysis confirmed the advantage of the composite membrane. Potential in lowering the membrane cost, the operation and maintenance cost, and in enhancing MBR waste water treatment efficiency is expected by the use of this new composite membrane. (C) 2012 Elsevier Ltd. All rights reserved.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学