Researcher
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Open time:..
The Last Update Time:..
Carbon nitride with electron storage property: Enhanced exciton dissociation for high-efficient photocatalysis
Indexed by:期刊论文
Date of Publication:2018-11-15
Journal:APPLIED CATALYSIS B-ENVIRONMENTAL
Included Journals:SCIE、Scopus
Volume:236
Page Number:99-106
ISSN No.:0926-3373
Key Words:Carbon nitride; Electron storage; Excitonic effect; Exciton dissociation; Artificial photosynthesis
Abstract:Excitonic effect, originated from the strong Coulomb attraction between electron and hole, plays an important role in the photocatalytic process of polymeric materials but has been long ignored. In view point of hot-carriers generation, the dissociation of Frenkel excitons is proposed as an effective way to improve the photocatalytic performance of polymeric photocatalysts. Herein, by taking graphitic carbon nitride (g-C3N4) as an example, we verify that endowing g-C3N4 with electron storage ability can facilitate exciton dissociation by extracting electrons from bound electron-hole couples around the electron stotage sites, therefore enhancing the hot-carriers harvest and suppressing the charge recombination. Benefiting from these advantages, the as-prepared material demonstrates excellent photocatalytic performance for both H-2 evolution and H2O2 generation. As a result, the apparent quantum yield (AQY) for H-2 evolution at 420 nm reaches 55%, which is much higher than most of the reported polymeric materials. The study described here offers a new way for designing advanced polymeric photocatalysts toward high performance solar energy conversion via excitonic engineering.
Pre One:Climatic burden of eating at home against away-from-home: A novel Bayesian Belief Network model for the mechanism of eating-out in urban China
Next One:Achieving efficient nitrogen removal and nutrient recovery from wastewater in a combining simultaneous partial nitrification, anammox and denitrification (SNAD) process with a photobioreactor (PBR) for biomass production and generated dissolved o