location: Current position: Home >> Scientific Research >> Paper Publications

A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

Hits:

Indexed by:期刊论文

Date of Publication:2009-08-15

Journal:JOURNAL OF HYDROLOGY

Included Journals:SCIE、EI、ESI高被引论文

Volume:374

Issue:3-4

Page Number:294-306

ISSN No.:0022-1694

Key Words:Monthly discharge time series forecasting; ARMA; ANN; ANFIS; GP; SVM

Abstract:Developing a hydrological forecasting model based on past records is crucial to effective hydropower reservoir management and scheduling. Traditionally, time series analysis and modeling is used for building mathematical models to generate hydrologic records in hydrology and water resources. Artificial intelligence (AI), as a branch of computer science, is capable of analyzing long-series and large-scale hydrological data. In recent years, it is one of front issues to apply AI technology to the hydrological forecasting modeling. In this paper, autoregressive moving-average (ARMA) models, artificial neural networks (ANNs) approaches, adaptive neural-based fuzzy inference system (ANFIS) techniques, genetic programming (GP) models and support vector machine (SVM) method are examined using the long-term observations of monthly river flow discharges. The four quantitative standard statistical performance evaluation measures, the coefficient of correlation (R), Nash-Sutcliffe efficiency coefficient (E), root mean squared error (RMSE), mean absolute percentage error (MAPE), are employed to evaluate the performances of various models developed. Two case study river sites are also provided to illustrate their respective performances. The results indicate that the best performance can be obtained by ANFIS, GP and SVM, in terms of different evaluation criteria during the training and validation phases. (C) 2009 Elsevier B.V. All rights reserved.

Pre One:洪家渡水电站洪水调度系统的设计与开发研究

Next One:基于模拟退火的粒子群算法在水电站水库优化调度中的应用