Hits:
Indexed by:期刊论文
Date of Publication:2010-12-25
Journal:水力发电学报
Included Journals:EI、PKU、ISTIC、CSCD、Scopus
Volume:29
Issue:6
Page Number:34-40
ISSN No.:1003-1243
Key Words:支持向量机;蚁群算法;参数优选;水文预报
Abstract:支持向量机算法(SVM)具有可靠的全局最优性和良好的泛化能力,尤其适用于中长期水文预报中有限样本的学习,然而该算法的成功与否很大程度上取决于其参数的选择,而常规经验选取方法往往不能获得满意效果。本文建立基于蚁群算法参数优化的支持向量机模型(ACO-SVM),利用蚁群算法(ACO)基于进化的随机搜索策略对支持向量机参数进行识别。以福建省安砂水库的月径流预报为例,进行建模仿真,将模拟结果与时间序列方法(ARMA)、人工神经网络方法(BP-ANN)所获得的预报结果进行对比分析。结果表明,在拟合精度方面,ACO-SVM模型相比ARMA模型和BP-ANN模型有不同程度的提高,且增幅较大,且具有较好的泛化性能。