![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
任职 : 现任大连理工大学化工学院教授、博士生导师。同时担任“膜科学与技术”期刊编委,膜学会理事(筹),膜工业协会工程与应用专业委员会及特种分离膜专业委员会委员、中国兵工学会活性炭测试分析与应用研究分会委员等。
性别:男
毕业院校:大连工学院
学位:硕士
所在单位:化工学院
学科:化学工艺. 膜科学与技术. 功能材料化学与化工
办公地点:化工综合楼A201
联系方式:微信/电话 13500711370
电子邮箱:wangth@dlut.edu.cn
Enhanced separation performance of coal-based carbon membranes coupled with an electric field for oily wastewater treatment
点击次数:
论文类型:期刊论文
发表时间:2016-08-10
发表刊物:SEPARATION AND PURIFICATION TECHNOLOGY
收录刊物:SCIE、EI、Scopus
卷号:168
页面范围:47-56
ISSN号:1383-5866
关键字:Carbon membrane; Electric field; Microfiltration; Oily wastewater
摘要:Coal-based carbon membrane coupled with an electric field is designed to achieve enhanced separation performance for oily wastewater treatment in this study. Effect of electric field intensity, concentration and pH of oily wastewater, rotate speed of peristaltic pump, electrolyte concentration, and electrode distance on separation performance of carbon membrane are investigated. The morphologies of carbon membranes are examined using scanning electron microscope (SEM). Fouling analysis is also carried out for further evaluating the antifouling ability of coal-based carbon membrane. The results demonstrate that coal-based carbon membranes integrated with an electric field show improved permeate flux and removal efficiency for oily wastewater treatment due to anodic oxidation. No obvious oil foulants are observed on carbon membrane by SEM images. Low total fouling ratio (TFR) and high flux recovery (FR) imply that exerting an electric field can significantly improve antifouling ability of carbon membrane. Acidic condition is benefit for carbon membrane to possess good fouling resistance to oil droplets. An decrease in electrode distance improves the separation performance of the treatment system. The optimum operation conditions of 0.31 V/cm electric field intensity, 7.5 r/min pump rotate speed, and 5 g/L electrolyte concentration are recommended. After cleaning, carbon membrane coupled with an electric field still demonstrates great potential in oily wastewater treatment. (C) 2016 Elsevier B.V. All rights reserved.