• 更多栏目

    王友年

    • 教授     博士生导师   硕士生导师
    • 性别:男
    • 毕业院校:大连工学院
    • 学位:硕士
    • 所在单位:物理学院
    • 学科:等离子体物理
    • 办公地点:大连理工大学物理系楼306
    • 联系方式:0411-84707307
    • 电子邮箱:ynwang@dlut.edu.cn

    访问量:

    开通时间:..

    最后更新时间:..

    A nonlinear electromagnetics model of an asymmetrically-driven, low pressure capacitive discharge

    点击次数:

    论文类型:期刊论文

    发表时间:2017-08-01

    发表刊物:PHYSICS OF PLASMAS

    收录刊物:Scopus、SCIE、EI

    卷号:24

    期号:8

    ISSN号:1070-664X

    摘要:It is well-known that standing waves having radially center-high voltage profiles exist in high frequency driven capacitive discharges. Capacitive sheaths can also nonlinearly excite driving frequency harmonics near the series resonance that can be spatially near-resonant, and therefore enhance the on-axis power deposition. The powered-electrode/plasma/grounded-electrode sandwich structure of an asymmetrically excited cylindrical discharge forms a three electrode system in which both z-symmetric and z-antisymmetric radially propagating wave modes can exist. We develop a nonlinear electromagnetics model for this system with radially-and time-varying sheath widths, incorporating both symmetric and antisymmetric modes, and the plasma skin effect. Waves generated in the electrostatic wave limit are also treated. The discharge is modeled as a uniform density bulk plasma with either homogeneous or Child law sheaths at the electrodes, incorporating their nonlinear voltage versus charge relations. The model includes a finite power source resistance and a self-consistent calculation of the dc bias voltages. The resulting set of nonlinear partial differential equations is solved numerically to determine the symmetric and antisymmetric mode amplitudes and the nonlinearly-excited radially-varying harmonics. Two examples driven at lower frequency (30 MHz) or at higher frequency (60 MHz) are examined. The first case displays the excited dominant ninth harmonic near the series resonance frequency with the fundamental frequency having a weak standing wave. The higher frequency case shows a more obvious standing wave effect, enhanced by the nonlinear harmonics. The symmetric and antisymmetric modes are of similar amplitudes over the driving electrode, summing to give a larger bottom sheath. Published by AIP Publishing.