bGqkI3CybZsXU8PPNLchd2jJQRhFdG83jvz0hXBHNnr9ngdsq1tVfbtUm46w
  • 其他栏目

    罗钟铉

    • 教授     博士生导师 硕士生导师
    • 主要任职:党委常委、副校长
    • 性别:男
    • 毕业院校:大连理工大学
    • 学位:博士
    • 所在单位:软件学院、国际信息与软件学院
    • 学科:软件工程. 计算机应用技术
    • 办公地点:大连理工大学主楼
    • 联系方式:
    • 电子邮箱:

    访问量:

    开通时间:..

    最后更新时间:..

    论文成果

    当前位置: 中文主页 >> 科学研究 >> 论文成果
    On structure of bivariate spline space of lower degree over arbitrary triangulation

    点击次数:

      发布时间:2019-03-10

      论文类型:期刊论文

      发表时间:2008-10-15

      发表刊物:JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS

      收录刊物:Scopus、EI、SCIE

      卷号:220

      期号:1-2

      页面范围:34-50

      ISSN号:0377-0427

      关键字:bivariate spline; generator basis; structure matrix; matrix of generator basis; vertex coding

      摘要:The structure of bivariate spline space over arbitrary triangulation is complicated because the dimension of a multivariate spline space depends not only on the topological property of the triangulation but also on its geometric property. A new vertex coding method to a triangulation is introduced in this paper to further study structure of the spline spaces. The upper bound of the dimension of spline spaces over triangulation given by L.L. Schumaker is slightly improved via the new vertex coding method. The structure of multivariate spline spaces S-1(2)(Delta) and S-1(3)(Delta) over arbitrary triangulation are studied via the method of smoothness cofactor and the structure matrix of multivariate spline ring by Luo and Wang. A kind of sufficient conditions on judging non-singularity of the S-1(2) (Delta) and S-1(3)(Delta) spaces over arbitrary triangulation is given, which only depends on the topological property of the triangulation. From the sufficient conditions, a triangulation strategy is presented at the end of the paper. The strategy ensures that the constructed triangulation is non-singular (or generic) for S-1(2) and S-1(3). (C) 2007 Elsevier B.V. All rights reserved.