修志龙

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:男

毕业院校:大连理工大学

学位:博士

所在单位:生物工程学院

学科:生物化工. 生物工程与技术

联系方式:zhlxiu@dlut.edu.cn

电子邮箱:zhlxiu@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Engineering islet for improved performance by optimized reaggregation in alginate gel beads

点击次数:

论文类型:期刊论文

发表时间:2017-05-01

发表刊物:BIOTECHNOLOGY AND APPLIED BIOCHEMISTRY

收录刊物:SCIE、EI、PubMed、Scopus

卷号:64

期号:3

页面范围:400-405

ISSN号:0885-4513

关键字:encapsulation; engineering islets; islets isolation; islet cell clusters; reaggregation

摘要:After islet isolation, diffusion has become the main mechanism to transport oxygen and nutrients into the core of islets. However, diffusion has limitations, by which nutrients cannot effectively reach the core of large islets and can eventually cause core cell death and islet loss. This problem can be resolved by dispersing islets into single islet cells, but single islet cells do not exhibit insulin release function in in vitro culture. In this study, we intended to establish a new islet engineering approach by forming islet cell clusters to improve islet survival and function. Therefore, alginate gels were used to encapsulate islet cells to form artificial islets after dispersion of islets into single cells. The shape of the islet cell clusters was similar to native islets, and the size of the islet cell clusters was limited to a maximum diameter of 100 mu m. By limiting the diameter of this engineered islet cell cluster, cell viability was nearly 100%, a significant improvement over natural islets. Importantly, islet cell clusters express the genes of islets, including Isl-1, Gcg, and insulin-1, and insulin secretion ability was maintained in vitro. C (C) 2016 International Union of Biochemistry and Molecular Biology, Inc.