个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:北京大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 固体力学. 生物与纳米力学
办公地点:大连理工大学综合实验一号楼308
电子邮箱:xsxu@dlut.edu.cn
个人简介Personal Profile
1978年至1993年间续在北京大学学习,获学士学位,硕士学位和博士学位。1993年在大连理工大学做博士后研究工作。在1995年8月出站前夕破格直接晋升为教授,并任工程力学研究所副所长。担任多个高校的客座教授和科学院研究所的客座研究员。
曾任国家211立项专家组成员;国家博士点基金评审专家组成员;教育部高校科技奖评审专家组成员;国家博士点、硕士点及重点学科评审专家;省力学学会流体力学专业委员会主任。曾获得香港Croucher Foundation;中国“国氏”博士后奖励基金(中国优秀博士后,1/10); “全国优秀博士后人员”称号。承担国家级研究项目十余项,发表学术论文二百余篇,此外专著,专利和软件著作权多项。
以培养多名国际联合培养研究生,并作为大连理工大学和香港城市大学博士研究生联合培养的联络人。
研究领域涉及新的科学理论,数值方法和计算方法,实验方法,工程应用等。主要研究成果包括:
1、现代力学工具和方法研究
完善现代力学先进的工具,即哈密顿体系。利用对偶的观点描述基本问题,将哈密顿体系方法推广到更广泛的领域。并建立系列的数值计算方法。该方法已经在工程中得到了应用。
2、结构稳定性和动力屈曲
建立结构稳定性和动力屈曲问题的控制方程。计算和分析梁板壳等典型工程结构的稳定性,临界载荷,屈曲模态和后屈曲发展路径等。为结构的轻型化及发展和应用提供依据。
3、断裂力学中的辛方法
在弹性断裂问题中,采用辛体系方法,将问题归结为辛本征值和辛本征解问题。这样,表征断裂的标志量应力强度因子(J积分或能量释放率)可直接解析表示出来。从而进一步构造奇异元,克服了有限元计算软件中网格和路径依赖。该方法已经应用于核主泵工程中。
4、辛离散有限元算法
借助于辛体系中的辛本征解,构造出一种辛离散有限元算法。该方法的特点在于,将有限元中的节点位移由辛本征解系数代替,从而在保证精度的前提下减少计算量并可以与有限元软件兼容。
5、纳米表面技术与吸能结构和装置的优化设计与研发
首次提出将纳米表面技术应用于吸能结构和装置。利用纳米表面技术诱导薄壁结构的屈曲模态,提高该结构的吸能效果,降低最大冲击载荷。提出一种新的吸能结构和装置设计原理与研发技术。该技术特别在汽车工业中有重要的应用。
6、纳米表面化结构抗屈曲设计技术
借助于局部纳米表面技术,采用优化设计的方法对整体结构局部表面纳米化,通过局部表面纳米化布局改变材料和结构的力学性能的分布,从而提高结构的抗屈曲能力。该技术可应用于航空飞行器及火箭等方面设计和工艺。
7、纳米表面化结构抗疲劳和断裂优化设计
通过优化设计的方法对整体结构局部表面纳米化布局设计。通过特殊的局部表面纳米化图案布局改变结构的应力和应变分布,以增强结构的抗疲劳和抗断裂特性。此技术在轻型结构的应用中有非常大的空间。
8、深海石油管道失稳问题的可靠性分析
研究了深海石油管道失稳的主要因素和机理。采用蒙特卡洛随机抽样的方法和响应面的方法对样本进行处理,通过数值计算完成可靠性分析。研究方法为类似问题提供一条解决途径。
9、微纳米结构的动力学分析
采用非局部理论和哈密顿体系,建立一种描述微纳米结构动力学控制方程。研究和分析了碳纳米管和石墨烯等结构的动力学特性,发现了一些新的现象。为微纳米结构的应用提供了依据。
10、光纤识别裂纹和结构健康测试技术
采用先进的光纤信息技术,建立识别结构裂纹和缺陷测试方法以及结构健康监测技术。其原理是通过光纤反映的结构应变场信息和结构应变场分析数据,得到结构裂纹和缺陷的准确信息。并编制具有自主版权的分析软件。
11、表面纳米化仿生材料优化设计技术
分析贝壳材料结构功能和机理,并通过局部表面纳米化布局实现仿贝壳材料结构的功能,采用优化设计的方法设计出最优的局部表面纳米化布局图案和仿生材料结构。这种结构具有优良的抗疲劳和抗断裂功能,也为有广泛应用的仿生材料的设计提供一种新的方法和技术。
发表主要学术论文
[1]. Wang MZ, Xu XS, A generalization of Almansi's theorem and its application, Appl. Math. Modelling, 1990, 14(5): 275-279
[2]. Xu XS, Wang MZ, 1991, General complete solutions of the equations of spatial and axisymmetric Stokes flow, Q. JI. Mech. Appl. Math., 1991, 44(4): 537-548
[3]. Xu XS, Wang MZ, On the completeness of solutions of the generalized axisymmetric Stokes flow equations, Acta Mathematica Scientia, 1993, 13(4): 222-228
[4]. Xu XS, Su XY, Yu TX, The propagation of longitudinal wave in rate-dependent plastic softening material, Sinence in China (Ser.A), 1994, 37(4): 450-458
[5]. Wang W, Xu XS, Wang MZ, Completeness of general solutions to axisymmetric problems of transverely isotropic body, Sinence in China (Ser.A), 1994, 37(5): 580-596
[6]. Xu XS, Su XY, Wang R, Dynamic buckling of elastic-plastic cylindrical shells on axial stress waves, Sinence in China (Ser.A), 1995, 38(4): 472-479
[7]. Xu XS, Zhong WX, Lu YL, Study of nonlinear long wave approximation in uniform channels via Hamiltonian structure, J. Hydrodynamics, (Ser.B), 1995, 7(1): 66-76
[8] Zhong, WX, Xu XS, Zhang HW, Hamilton system and the Saint-Venant problem in elasticity, Appl. Math. Mech. , 1996, 17(9): 827-836
[9] Xu XS, Zhong WX, Zhang HW, The Saint-Venant problem and principle in elasticity, Int. J. Solids Structures, 1997, 34(22): 2815-2827
[10] Xu XS, Xu JY, Liu ST, Liu KX, Dynamic axisymmetric and non-axisymmetric buckling of finite cylindrical shells in propagting ang reflecting of axial stress waves, J. Phys iv France, 1997, 7, C3-617 - C3-622
[11] Xu XS, Yu TX, Su XY, Propagation of wave in rate-dependent plastic softening rod and beam, J. Engineering Mechanics, 1997, 123(3): 190-195
[12] Xu XS, Guo XL, A theoretical and experimental study on the nonlinear shallow water wave in containers, J. Experimental Mechanics, 2002, 16(3): 298-304
[13] Xu XS, Guo XL, A method of Hamiltonian formulation for elastic structural vibration in rotating system, J. Vibration Engineering, 2003, 16(1): 36-40
[14] Gu Q, Xu XS, Leung AYT, The application of Hamiltonian system for two-dimensional transversely isotropic piezoelectric media. Journal of Zhejiang University, Science. 2005, 6(9): 915-921
[15] Xu XS, Gu Q, Leung AYT, Zhen JJ, A symplectic eigensolution method in transversely isotropic piezoelectric cylindrical media. Journal of Zhejiang University, Science. 2005, 6(9): 922-927
[16] Wang GP, Xu XS, Stokes flow in lid-driven cavities via Hamiltonian system, Journal of Jilin University (Engineering and Technology Edition), 2006, 36: 102-106
[17] Xu XS, Zhang WX, Li X, An application of the symplectic system in two-dimensional viscoelasticity, International Journal of Engineering Science, 2006,44: 897–914
[18] Xu XS, Ma Y, Lim CW, Chu HJ Dynamic buckling of cylindrical shells subject to an axial impact in a symplectic system. International Journal of Solids and Structures, 2006 43: 3905–3919
[19] Leung AYT, Xu XS. The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion, Int. J. Numer. Meth. Engng 2007; 69:2381–2408
[20] Xu XS, Duan Z, Ma Y, Chu HJ. A symplectic method and dynamic buckling of elastic cylindrical shells under both axial impact and internal or external pressure, Explosion and shock waves, 2007, 27(6):509-514
[21] Xu XS, Wang GP, Sun FM. A analytical and numerical method of symplectic system for Stokes flow in the two-dimensional rectangular domain. Applied Mathematics and Mechanics, 2008, 29(6): 715-724
[22] Xu XS, Leung AYT, Gu Q, 3D symplectic expansion for piezoelectric media,International Journal for Numerical Methods in Engineering, 2008, 74:1848–1871
[23] Xu X S, Chu H J, Lim C W. Hamiltonian system for dynamic buckling of transversely isotropic cylindrical shells subject to an axial impact. International Journal of Structure and Dynamics,2008,2(3):487-504
[24] Sun FM, Xu XS, The Control Mechanism of a New Fish-Like Underwater Robot with Two Tails, Lecture Notes in Computer Science, 2008, LNAI 5314(1) 304–313
[25] Zhang WX, Xu XS, Hamiltonian system and 2D problem of thermo-visco elasticity. Journal of University of Science and Technology of China, 2008, 38(2): 200-206
[26] Leung AYT, Xu XS, Zhou ZH, Wu YF, Analytic stress intensity factors for finite elastic disc using symplectic expansion. Engineering Fracture Mechanics. 2009; 76(12): 1866-1882
[27] Xu XS, Ma JQ, Lim CW, Chu HJ. Dynamic local and global buckling of cylindrical shells under axial impact.Engineering Structures, 2009, 31(5): 1132-1140
[28] Xu XS, Chu HJ, Lim CW. A symplecyic Hamiltonian appoach for thermal buckling of cylindrical shells. International Journal of Structural Stability and Dynamics, 2010, 10(2): 273-286
[29] Xu XS, Zhou ZH, Leung AYT. Analytical stress intensity factors for edge-cracked cylinder. International Journal of Mechanical Sciences, 2010, 52: 892–903
[30] Xu XS, Ma JQ, Lim CW, Zhang G. Dynamic torsional buckling of cylindrical shells. Computers and Structures, 2010, 88: 322–330
[31] Leung AYT, Xu XS, Zhou ZH. Hamiltonian approach to analytical thermal stress intensity factors—Part 1: thermal intensity factor. Journal of Thermal Stresses, 2010 , 33: 262–278
[32] Leung AYT, Xu XS, Zhou ZH. Hamiltonian approach to analytical thermal stress intensity factors—Paret 2: thermal stress intensity factor. Journal of Thermal Stresses, 2010 , 33: 279–301
[33] Zhou ZH, Xu XS, Leung AYT. Mode III edge-crack in magneto-electro-elastic media by symplectic expansion. Engineering Fracture Mechanics, 2010, 77: 3157–3173
[34] Zhang WX, Xu XS, Yuan F. The symplectic system method in the stress analysis of 2D elasto-viscoelastic fiber reinforced composites. Arch Appl Mech, 2010, 80: 829-841
[35] Zhou ZH, Wong KW, Xu XS, Leung AYT. Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of Sound and Vibration, 2010,330: 1005–1017
[36] Sun FM, Bian YN, Arima H, Ikegami Y, Xu XS. Strength characteristics of the self-sustained wave in grooved channels with different groove length. Heat Mass Transfer, 2010, 46:1229–1237
[37] Lim CW, Xu XS. Symplectic Elasticity: Theory and Applications. Applied Mechanics Reviews. 2010, 63 / 050802-1- 050802-10
[38] Zhou ZH, Xu XS and Leung AYT. Analytical Mode III electromagnetic permeable cracks in magnetoelectroelastic materials. Computers & Structures, 2011, 89: 631-645
[39] Zhou ZH, Xu XS, Leung AYT. Transient thermal stress intensity factors for Mode I edge-cracks. Nuclear Engineering and Design. 2011, 241: 3613-3623
[40] Xu XS, Zhang G, Zeng QC, Chu HJ, Bamboo Node-Type Local Buckling of Cylindrical Shells Under Axial Impact. Advances in Vibration Engineering, 2011, 10(1): 41-52
[41] Zhou ZH, Wong KW, Xu XS, Leung AYT. Natural vibration of circular and annular thin plates by Hamiltonian approach. Journal of Sound and Vibration. 2011, 330 (5): 1005-1017
[42] Sun JB, Xu XS, Lim CW. Dynamic Buckling of Cylindrical shells under Axial Impact in Hamiltonian System. Int. J. Nonlinear Sci. Numer. Simul, 2012(13):93-97.
[43] Zhang WX, Xu XS, The symplectic approach for two-dimensional thermo-viscoelastic analysis, International Journal of Engineering Science 2012, 50: 56-69
[44] Wu YF, Xu XS, Sun JB, Jiang C. Analytical solution for the bond strength of externally bonded reinforcement. Composite Structures. 2012, 94: 3232-3239
[45] Dong JZ, Xu XS, Zhang Y. Nonlinear Waves Driven by Motional Plates in Shallow Two-Layer Fluid. Advnces in Vibration Engineering, 2012, 11(4): 389-402
[46] Xu XS, Sun JB, Lim CW, Dynamic torsional buckling of cylindrical shells in Hamiltonian system, Thin-Walled Structures 64 (2013) 23-30
[47] Sun JB, Xu XS, Lim CW, Tan VBC. An energy conservative symplectic methodology for buckling of cylindrical shells under axial compression, Acta Mech, 224 (2013), 1579-1592
[48] Sun JB, Xu XS, Lim CW. Localization of dynamic buckling patterns of cylindrical shells under axial impact, International Journal of Mechanical Sciences 66 (2013) 101-108
[49] Zhou ZH, Xu XS, Leung AYT, Huang Y. Stress intensity factors and T-stress for an edge interface crack by symplectic expansion. Engineering Fracture Mechanics 102 (2013) 334-347
[50] Sun JB, Xu XS, Lim CW. Accurate symplectic space solutions for thermal buckling of functionally graded cylindrical shells. Composites: Part B 55 (2013) 208-214
[51] Sun JB, Xu XS, Lim CW. Torsional buckling of functionally graded cylindrical shells with temperature-dependent properties. International Journal of Structural Stability and Dynamics, 2014, 14(1): 1350048-1–23.
[52] Zhou ZH, Xu XS, Leung AYT. The finite element discretized symplectic method for interface cracks, Composites Part B, 2014, 58: 335–342.
[53] Sun JB, Xu XS, Lim CW. Buckling of functionally graded cylindrical shells under combined thermal and compressive loads. Journal of Thermal Stresses, 2014, 37: 340-362
[54] Sun JB, Xu XS, Lim CW. Buckling of cylindrical shells under external pressure in a Hamiltonian system. Journal of Theoretical and Applied Mechanics. 2014, 52(3): 641-653
[55] Leung AYT, Zhou ZH, Xu XS, Determination of stress intensity factors by the finite element discretized symplectic method, International Journal of Solids and Structures, 2014, 51, 1115-1122.
[56] Zhou ZH, AYT Leung, Xu XS, Luo XW, Mixed-mode thermal stress intensity factors from the finite element discretized symplectic method, International Journal of Solids and Structures, 2014, 51(21): 3798-3806.
[57] Xu CH, Zhou ZH, Xu XS, Leung AYT, Fracture analysis of mode III crack problems for the piezoelectric bimorph, Archive of Applied Mechanics, 2014, 84(7), 1057-1079.
[58] Jiabin Sun, Xinsheng Xu, C.W. Lim, Weiyu Qiao. Accurate buckling analysis for shear deformable FGM cylindrical shells under axial compression and thermal loads. Composite Structures, 2015,123: 246-256
[59] Xu XS, Cheng XH, Zhou ZH, Xu CH, An analytical approach for the mixed-mode crack in linear viscoelastic media, European Journal of Mechanics A/Solids, 2015, 52: 12-25
[60] Xu CH, Zhou ZH, Xu XS, Electroelastic singularities and intensity factors for an interface crack in piezoelectric-elastic bimaterials, Applied Mathematical Modelling. 2015, 39: 2721-2739
[61] Zhou ZH, Xu CH, Xu XS, Leung AYT, The finite element discretized symplectic method for the steady-state heat conduction with singularities in composite structures, Numerical Heat Transfer, Part B: Fundamentals. 2015, 67: 302-319
[62] Xu CH, Zhou ZH, Leung AYT, Xu XS, Luo XW. The finite element discretized symplectic method for composite mode III cracks. Engineering Fracture Mechanics. 2015, 140: 43-60
[63] Xu CH, Zhou ZH, Xu XS, Evaluation of mode III interface cracks in magnetoelectroelastic bimaterials by symplectic expansion, Journal of intelligent material systems and structures, 2015, 26(11): 1417-1441
[64] Sun JB, Lim CW, Xu XS, Mao H. Accurate buckling solutions of grid-stiffened functionally graded cylindrical shells under compressive and thermal loads. Composites Part B, 2016, 89: 96-107
[65] Sun JB, Lim CW, Zhou ZH, Xu XS, Sun W. Rigorous buckling analysis of size-dependent functionally graded cylindrical nanoshells, Journal of Applied Physics, 119, 214303 (2016)
[66] Sun JB, Xu XS, Lim CW, Zhou ZH, Xiao SY, Accurate thermo-electro-mechanical buckling of shear deformable piezoelectric fiber-reinforced composite cylindrical shells, Composite Struct., 141, 221-231, 2016.
[67] Qiu WB, Zhou ZH, Xu XS, The dynamic behavior of circular plates under impact loads, Journal of Vibration Engineering and Technologies, 2016, 4(2): 111-116
[68] Sun JB, Xu XS, Lim CW, Combined load buckling for cylindrical shells based on a symplectic elasticity approach, Journal of Theoretical and Applied Mechanics, 2016, 54(3): 705-716
[69] Xu W, Tong ZZ, Leung AYT, Xu XS, Zhou ZH, Evaluation of the stress singularity of an interface V-notch in a bimaterial plate under bending, Engineering Fracture Mechanics, 2016,168: 11-25
[70] Hu JL, Xu XS. Fast-start control of bionic fish using giant magnetostrictive materials. Journal of Vibration Engineering & Technologies, 2017, 5(2): 207-211
[71] Xu XS, Tong ZZ, Rong DL, Cheng XH, Xu CH, Zhou ZH. Fracture analysis of magnetoelectroelastic bimaterials with imperfect interfaces by symplectic expansion, Applied Mathematics and Mechanics, 2017, 38(8): 1043-1058.