个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北师范大学
学位:学士
所在单位:电气工程学院
电子邮箱:wuyan@dlut.edu.cn
Performance evaluation of non-thermal plasma injection for elemental mercury oxidation in a simulated flue gas
点击次数:
论文类型:期刊论文
发表时间:2014-03-15
发表刊物:JOURNAL OF HAZARDOUS MATERIALS
收录刊物:SCIE、EI、PubMed、Scopus
卷号:268
页面范围:237-245
ISSN号:0304-3894
关键字:Non-thermal plasma injection; Surface discharge plasma reactor; HgO; Mercury oxidation
摘要:The use of non-thermal plasma (NTP) injection approach to oxidize elemental mercury (Hg-0) in simulated flue gas at 110 degrees C was studied, where a surface discharge plasma reactor (SDPR) inserted in the simulated flue duct was used to generate and inject active species into the flue gas. Approximately 81% of the Hg-0 was oxidized and 20.5 mu g kJ(-1) of energy yield was obtained at a rate of 3.9 J L-1. A maximal Hg-0 oxidation efficiency was found with a change in the NTP injection air flow rate. A high Hg-0 oxidation efficiency was observed in the mixed flue gas that included O-2, H2O, SO2, NO and HCl. Chemical and physical processes (e.g., ozone, N-2 metastable states and UV-light) were found to contribute to Hg-0 oxidation, with ozone playing a dominant role. The deposited mercury species on the internal surface of the flue duct was analyzed using X-ray photoelectron spectroscopy (XPS) and electronic probe microanalysis (EPMA), and the deposit was identified as HgO. The mercury species is thought to primarily exist in the form of HgO(s) by adhering to the suspended aerosols in the gas-phase. (C) 2014 Published by Elsevier B.V.