个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
毕业院校:东北师范大学
学位:学士
所在单位:电气工程学院
电子邮箱:wuyan@dlut.edu.cn
Plasma-TiO2 Catalytic Method for High-Efficiency Remediation of p-Nitrophenol Contaminated Soil in Pulsed Discharge
点击次数:
论文类型:期刊论文
发表时间:2011-11-01
发表刊物:ENVIRONMENTAL SCIENCE & TECHNOLOGY
收录刊物:Scopus、SCIE、EI、PubMed、PKU、ISTIC
卷号:45
期号:21
页面范围:9301-9307
ISSN号:0013-936X
摘要:Nonthermal discharge plasma and TiO2 photocatalysis are two techniques capable of organic pollutants removal in soil. In the present study, a pulsed discharge plasma-TiO2 catalytic (PDPTC) technique by combining the two means, where catalysis of TiO2 is driven by the pulsed discharge plasma, is proposed to investigate the remediation of p-nitrophenol (PNP) contaminated soil. The experimental results showed that 88.8% of PNP was removed within 10 min of treatment in PDPTC system and enhancing pulse discharge voltage was favorable for PNP degradation. The mineralization of PNP and intermediates generated during PDPTC treatment was followed by UV-vis spectra, denitrification, total organic carbon (TOC), and COx selectivity analyses. Compared with plasma alone system, the enhancement effects on PNP degradation and mineralization were attributed to more amounts of chemically active species (e.g., O-3 and H2O2) produced in the PDPTC system. The main intermediates were identified as hydroquinone, benzoquinone, catechol, phenol, benzo[d][ 1, 2, 3]trioxole, acetic acid, formic acid, NO2-, NO3-, and oxalic acid. The evolution of the main intermediates with treatment time suggested the enhancement effect of the PDPTC system. A possible pathway of PNP degradation in soil in such a system was proposed.