大连理工大学  登录  English 
迟国泰
点赞:

教授   博士生导师   硕士生导师

性别: 男

毕业院校: 大连理工大学

学位: 博士

所在单位: 金融与会计研究所

学科: 管理科学与工程. 投资学. 会计学

办公地点: 大连理工大学经济管理学院D座535室

联系方式: 0411-84707374

电子邮箱: chigt@dlut.edu.cn

email : chigt@dlut.edu.cn

手机版

访问量:

开通时间: ..

最后更新时间: ..

当前位置: 中文主页 >> 科学研究 >> 论文成果
Hybrid Model for Credit Risk Prediction: An Application of Neural Network Approaches

点击次数:

论文类型: 期刊论文

发表时间: 2019-08-01

发表刊物: INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS

收录刊物: SCIE、EI、SSCI

卷号: 28

期号: 5

ISSN号: 0218-2130

关键字: Credit risk prediction; hybrid model; traditional methods; artificial intelligence (AI)

摘要: Credit risk prediction is essential for banks and financial institutions as it helps them to evade any inappropriate assessments that can lead to wasted opportunities or monetary losses. In recent times, the hybrid prediction model, a combination of traditional and modern artificial intelligence (AI) methods that provides better prediction capacity than the use of single techniques, has been introduced. Similarly, using conventional and topical artificial intelligence (AI) technologies, researchers have recommended hybrid models which amalgamate logistic regression (LR) with multilayer perceptron (MLP). To investigate the efficiency and viability of the proposed hybrid models, we compared 16 hybrid models created by combining logistic regression (LR), discriminant analysis (DA), and decision trees (DT) with four types of neural network (NN): adaptive neurofuzzy inference systems (ANFISs), deep neural networks (DNNs), radial basis function networks (RBFs) and multilayer perceptrons (MLPs). The experimental outcome, investigation, and statistical examination express the capacity of the planned hybrid model to develop a credit risk prediction technique different from all other approaches, as indicated by ten different performance measures. The classifier was authenticated on five real-world credit scoring data sets.

辽ICP备05001357号 地址:中国·辽宁省大连市甘井子区凌工路2号 邮编:116024
版权所有:大连理工大学