教授 博士生导师 硕士生导师
性别: 男
毕业院校: 大连理工大学
学位: 博士
所在单位: 金融与会计研究所
学科: 管理科学与工程. 投资学. 会计学
办公地点: 大连理工大学经济管理学院D座535室
联系方式: 0411-84707374
电子邮箱: chigt@dlut.edu.cn
email : chigt@dlut.edu.cn
开通时间: ..
最后更新时间: ..
点击次数:
论文类型: 会议论文
发表时间: 2019-01-01
页面范围: 208-211
关键字: Skewed data; Small business loan; oversampling; SMOTE; WSMOTE-ensemble
摘要: The current study proposes a novel ensemble approach rooted in the weighted synthetic minority over-sampling technique (WSMOTE) algorithm being called WSMOTE-ensemble for skewed loan performance data modeling. The proposed ensemble classifier hybridizes WSMOTE and Bagging with sampling composite mixtures (SCMs) to minimize the class skewed constraints linking to the positive and negative small business instances. It increases the multiplicity of executed algorithms as different sampling composite mixtures are applied to form diverse training sets. Based on the fitted evaluation measures, finally this study recommends that the `WSMOTE-ensemblek-NN' methodology generating from the WSMOTE-decision tree-bagging with k nearest neighbor is the best fusion sampling strategy which is a novel finding in this domain.