Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis

Hits:

Indexed by:期刊论文

Date of Publication:2016-12-01

Journal:STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION

Included Journals:SCIE、EI、Scopus

Volume:54

Issue:6,SI

Page Number:1469-1484

ISSN No.:1615-147X

Key Words:Robust topology optimization; Vibration; Load uncertainty; Dynamic compliance; Convex model; Inhomogeneous eigenvalue

Abstract:Variability of load magnitude/direction is a most significant source of uncertainties in practical engineering. This paper investigates robust topology optimization of structures subjected to uncertain dynamic excitations. The unknown-but-bounded dynamic loads/accelerations are described with the non-probabilistic ellipsoid convex model. The aim of the optimization problem is to minimize the absolute dynamic compliance for the worst-case loading condition. For this purpose, a generalized compliance matrix is defined to construct the objective function. To find the optimal structural layout under uncertain dynamic excitations, we first formulate the robust topology optimization problem into a nested double-loop one. Here, the inner-loop aims to seek the worst-case combination of the excitations (which depends on the current design, and is usually to be found by a global optimization algorithm), and the outer-loop optimizes the structural topology under the found worst-case excitation. To tackle the inherent difficulties associated with such an originally nested formulation, we convert the inner-loop into an inhomogeneous eigenvalue problem using the optimality condition. Thus the double-loop problem is reformulated into an equivalent single-loop one. This formulation ensures that the strictsense worst-case combination of the uncertain excitations for each intermediate design be located without resorting to a time-consuming global search algorithm. The sensitivity analysis of the worst-case objective function value is derived with the adjoint variable method, and then the optimization problem is solved by a gradient-based mathematical programming method. Numerical examples are presented to illustrate the effectiveness and efficiency of the proposed framework.

Pre One:New advances of manufacturing and interface-related topology optimization problems with implicit geometrical description

Next One:Structural topology optimization with minimum distance control of multiphase embedded components by level set method

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com