Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Structural topology optimization with minimum distance control of multiphase embedded components by level set method

Hits:

Indexed by:期刊论文

Date of Publication:2016-07-01

Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING

Included Journals:SCIE、EI

Volume:306

Page Number:299-318

ISSN No.:0045-7825

Key Words:Topology optimization; Level set; Integrated design; Embedded component; Minimum distance control; Virtual boundary offset

Abstract:This paper presents a novel topology optimization method for designing structures with multiphase embedded components under minimum distance constraints in the level set framework. By using the level set representation for both the component layout and the host structure topology, the shapes of the components can be easily preserved, and optimal structural topologies with smooth boundary/material interface can be obtained. With the purpose of preventing the components moving too close to each other, a minimum distance constraint based on virtual boundary offset is proposed. Different from existing distance detection methods relying on explicit topology representation, the proposed constraint is imposed as a unified integral form, for which the design sensitivity can be readily obtained. Moreover, this constraint is effective for detecting the distance between any complex-shaped components. Several numerical examples are presented to demonstrate the validity and effectiveness of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.

Pre One:Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis

Next One:Construction and application of an ellipsoidal convex model using a semi-definite programming formulation from measured data

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com