Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2016-07-01
Journal:COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
Included Journals:SCIE、EI
Volume:306
Page Number:299-318
ISSN No.:0045-7825
Key Words:Topology optimization; Level set; Integrated design; Embedded component; Minimum distance control; Virtual boundary offset
Abstract:This paper presents a novel topology optimization method for designing structures with multiphase embedded components under minimum distance constraints in the level set framework. By using the level set representation for both the component layout and the host structure topology, the shapes of the components can be easily preserved, and optimal structural topologies with smooth boundary/material interface can be obtained. With the purpose of preventing the components moving too close to each other, a minimum distance constraint based on virtual boundary offset is proposed. Different from existing distance detection methods relying on explicit topology representation, the proposed constraint is imposed as a unified integral form, for which the design sensitivity can be readily obtained. Moreover, this constraint is effective for detecting the distance between any complex-shaped components. Several numerical examples are presented to demonstrate the validity and effectiveness of the proposed method. (C) 2016 Elsevier B.V. All rights reserved.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com