Zhan Kang

Professor   Supervisor of Doctorate Candidates   Supervisor of Master's Candidates

Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics

Gender:Male

Alma Mater:Stuttgart University, Germany

Degree:Doctoral Degree

School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment

Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics

Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang

Contact Information:zhankang#dlut.edu.cn 13190104312

E-Mail:zhankang@dlut.edu.cn


Paper Publications

Mechanics of the folding of a nanotube

Hits:

Indexed by:期刊论文

Date of Publication:2018-11-23

Journal:NANOTECHNOLOGY

Included Journals:PubMed、SCIE、EI

Volume:29

Issue:47

Page Number:475602

ISSN No.:0957-4484

Key Words:folded nanotube; collapsed cross-section; finite-deformation theoretical model; small-deformation theoretical model; scaling law

Abstract:Nanotubes fold due to the competition between their mechanical stability and van der Waals interactions. The caused dramatic morphology change promises exciting applications of nanotubes in responsive and reconfigurable nanodevices. To investigate the folding mechanism, a curvature-based finite-deformation theoretical model simultaneously considering both the folding of a nanotube and the possible collapsing of the cross-section is developed. The predicted critical condition and the profiles in both axial and transverse directions agree well with molecular dynamics (MD) solutions, demonstrating that the cross-sectional deformation should be taken into account when investigating the folding of a nanotube with a large diameter. Moreover, simple scaling laws of the critical conditions are proposed through a small-deformation theoretical model. With these scaling laws, one can easily and quickly determine both the collapsing state of the cross-section and the folding state of the nanotube with only geometrical parameters L-total, D, t and n rather than the difficult-to-determine material properties EI and gamma.

Pre One:JIFEX software for finite element analysis and optimization design

Next One:Core melt temperature effects on cylindritic structures of co-injection molded polypropylene parts

Profile

Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.

 

Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao

https://orcid.org/0000-0001-6652-7831

http://www.ideasdut.com