Zhan Kang
Professor Supervisor of Doctorate Candidates Supervisor of Master's Candidates
Main positions:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Other Post:Deputy Dean, Faculty of Vehicle Engineering and Mechanics
Gender:Male
Alma Mater:Stuttgart University, Germany
Degree:Doctoral Degree
School/Department:Department of Engineering Mechanics/ State Key Laboratory of Structural Analysis for Industrial Equimpment
Discipline:Engineering Mechanics. Computational Mechanics. Aerospace Mechanics and Engineering. Solid Mechanics
Business Address:https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com
https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://www.researchgate.net/profile/Zhan_Kang
Contact Information:zhankang#dlut.edu.cn 13190104312
E-Mail:zhankang@dlut.edu.cn
Hits:
Indexed by:期刊论文
Date of Publication:2018-08-31
Journal:INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING
Included Journals:SCIE、EI
Volume:115
Issue:9
Page Number:1154-1173
ISSN No.:0029-5981
Key Words:phononic crystals; random material property; robust design; stochastic response; topology optimization
Abstract:The uncertain spatial variation of material properties can remarkably affect the band gap characteristics of phononic crystals (PnCs). It is necessary to consider this issue when designing and manufacturing PnC materials/structures. This paper investigates a robust topology optimization method for designing the microstructures of PnCs by considering random-field material properties. Herein, the spatial distribution of the material properties is first represented by a random field and then discretized into uncorrelated stochastic variables with the expansion optimal linear estimation method; stochastic band gap analysis is then conducted with polynomial chaos expansion. Furthermore, a robust topology optimization formulation of PnCs is proposed on the basis of the relative elemental density, where a weighted objective function handles the compromise of the mean value and standard deviation of the PnC band gap. The band gap response is analyzed, employing the finite element method for each sample of polynomial chaos expansion. In this context, the sensitivities of the stochastic band gap behaviors to the design variables are also derived. Numerical examples demonstrate that the proposed method can generate meaningful optimal topologies of PnCs with a relatively large width and less sensitive band gap. Additionally, the effects of the weight factors in the objective function and the variation coefficient of material properties are discussed.
Dr. Zhan Kang is a Changjiang Scholar Chair Professor of Dalian University of Technology. He graduated from Shanghai Jiaotong University in 1992, received his MEng in mechanics from Dalian University of Technology in 1995 and his Dr. –Ing. degree from Stuttgart University, Germany in 2005. His current research involves issues such as topology optimization, structural optimization under uncertainties, design optimization of smart structures and nanomechanics. Dr. Kang has published over 100 research papers in peer-reviewed international journals and one monograph. He has received 5500 citations and has an H-index of 39 (Google Scholar). Dr. Kang has been granted the Outstanding Youth Fund of Natural Science Foundation of China (NSFC). He has been principal investigator of 8 NSFC projects and a Key Project of Chinese National Programs for Fundamental Research and Development (973 Project). He has also conducted many consultancy projects.
Google Scholar Page: https://scholar.google.com/citations?user=PwlauJAAAAAJ&hl=zh-CN&oi=ao
https://orcid.org/0000-0001-6652-7831
http://www.ideasdut.com