学位:博士
职称:教授
所在单位:材料科学与工程学院
长期从事金属材料蠕变、组织演化、损伤及寿命预测工作。主持和参加国家自然科学基金重点和面上项目6项,“863”计划课题2项,省部级及企业项目20余项。获国家发明专利5项,发表学术论文200余篇。出版专著“耐热钢持久性能的统计分析及可靠性预测”1部(科学出版社),译著“高温合金”1部,编著1部。获辽宁省教学名师,宝钢教育奖优秀教师奖。辽宁省教学成果一等奖1项,国家本科一流课程、国家精品在线开放课程负责人。Emerald出版社颁发的学术奖“Literati Club Awards for Excellence”,金属学报2009-2015年度优秀论文奖。省部级科技奖励一等奖、二等奖5项。
The influence of Al elements on the structure and the creep behavior of AlxCoCrFeNi high entropy alloys
点击次数:
论文类型:期刊论文
发表时间:2016-02-01
发表刊物:MATERIALS LETTERS
收录刊物:SCIE、EI
卷号:164
页面范围:344-347
ISSN号:0167-577X
关键字:High entropy alloy; Crystal structure; Thermal properties; Creep; Stress relaxation
摘要:The microstructure, crystal structure, creep behavior and mechanism of AlxCoCrFeNi (x is in molar ratio) high entropy alloys were examined. The low Al content of Al0.15CoCrFeNi alloy had single FCC structure with columnar cell microstructure, while the high Al content of Al0.60CoCrFeNi alloy contained FCC+BCC duplex crystal structure with columnar dendrite microstructure. The creep property, evaluated by stress relaxation test, showed that the Al0.15CoCrFeNi alloy had a higher creep resistant property than that of the Al0.60CoCrFeNi alloy. The creep constitutive equation for the Al0.15CoCrFeNi alloy was established with an average stress exponent of 5.56 and an average activation energy of 385 kJ mol(-1), while it was with a larger average stress exponent of 8.82 and a smaller average activation energy of 334 kJ mol(-1) for the Al0.60CoCrFeNi alloy. The analysis of apparent activation volume reveals that both alloys were in a rate limiting mechanism of cross-slip. Then, the higher stacking fault energy of the Al0.60CoCrFeNi alloy was considered to result in its higher creep rate. Therefore, it was concluded that the increased Al element tended to reduce the creep resistant property of the AlxCoCrFeNi alloys by increasing the stacking fault energy. (C) 2015 Elsevier B.V. All rights reserved.
发表时间:2016-02-01