location: Current position: Home >> Scientific Research >> Paper Publications

The seepage characteristics of methane hydrate-bearing clayey sediments under various pressure gradients

Hits:

Indexed by:Journal Papers

Date of Publication:2020-01-15

Journal:ENERGY

Included Journals:EI、SCIE

Volume:191

ISSN No.:0360-5442

Key Words:Methane hydrate; Seepage characteristics; Water-saturated; Minimum threshold pressure gradient

Abstract:As a wide range of clean energy, methane hydrate is mostly formed in low-permeability clayey sediments. And the gas production rate from low-permeability hydrate reservoirs will be greatly influenced by the seepage characteristics. In this study, a series of seepage experiments was performed on methane hydrate-bearing clayey sediments. The results show that water flow in clayey sediments with different hydrate saturations exhibits both Non-Darcy and Darcy flow behaviors. Additionally, the minimum threshold pressure gradient (TPG) is present during water phase flow of hydrate-bearing clayey sediments, which may be not favorable for methane hydrate exploitation. The minimum TPG firstly decreases and then increases with an increase in hydrate saturation, providing theoretical guidance for the pressure gradient used in depressurization process during methane hydrate exploitation to improve gas production rate. The water permeability (K-w) and the permeability coefficient (k') firstly increase and then decrease with an increase in hydrate saturation. In addition, the water permeability increases gradually with decreases in the minimum TPG for clayey sediments with different hydrate saturations. The relationship between minimum TPG and water permeability is described by the power function as TPG(min) = 2.81231 x 10(-4) x K-w(-0.57767). This relationship provides the basic permeability parameters for the numerical simulation of methane hydrate exploitation. (C) 2019 Elsevier Ltd. All rights reserved.

Next One:Effect of reformation of gas hydrate on the gas phase permeability of montmorillonite