location: Current position: Home >> Scientific Research >> Paper Publications

自适应参数的AOSVR算法及其在股票预测中应用

Hits:

Indexed by:期刊论文

Date of Publication:2009-07-15

Journal:大连理工大学学报

Included Journals:Scopus、EI、PKU、ISTIC、CSCD

Volume:49

Issue:4

Page Number:605-610

ISSN No.:1000-8608

Key Words:在线支持向量机回归算法;参数选择;非稳定时间序列;股票预测

Abstract:以股票预测为背景,在一种在线SVR算法AOSVR中,引入Cherkassky参数选择策略,形成自适应参数的AOSVR算法.根据时间序列的变化,通过在线调整SVR参数达到更好的预测精度和泛化能力.另外,针对股票市场特性,利用AOSVR的"忘记"阈值丢掉早期数据来集中刻画近期的股市特点.将自适应参数的AOSVR算法应用到上证综合指数构成的时间序列上,取得了良好的预测效果.

Pre One:An intuitionistic fuzzy associative memory network and its learning rule

Next One:Boundedness and Convergence of Online Gradient Method with Penalty for Linear Output Feedforward Neural Networks