Release Time:2019-03-10 Hits:
Indexed by: Journal Article
Date of Publication: 2009-03-15
Journal: 计算机研究与发展
Included Journals: Scopus、CSCD、ISTIC、PKU、EI
Volume: 46
Issue: 3
Page Number: 443-451
ISSN: 1000-1239
Key Words: 本体学习;模糊形式概念分析;向量空间模型;本体关系;本体概念
Abstract: 本体是WWW进化为语义Web版本的瓶颈,手工构造本体费时费力,本体学习技术使得在文本中自动构造本体成为可能,但存在通用性差和准确性低等问题.提出以面向对象思想的分析方法为基础,把传统的单层文本向量空间模型(VSM)改进为2层向量空问模型(double vector space model,D-VSM),该模型不仅具有属性特性,而且还具有很强的关系特性.在此模型的基础上,引入模糊形式概念分析(fuzzy formal concept analysis,FFCA)本体学习技术.该技术充分考虑D-VSM模型中的数据分布特点,较好地解决本体学习通用性、本体关系获取等问题.基于上述方法实现一个本体学习工具,为本体的(半)自动构造提供有力的支持.