韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

基于自回归模型和关联向量机的癫痫脑电信号自动分类

点击次数:

论文类型:期刊论文

发表时间:2011-12-20

发表刊物:中国生物医学工程学报

收录刊物:Scopus、PKU、ISTIC、CSCD

卷号:30

期号:6

页面范围:864-870

ISSN号:0258-8021

关键字:癫痫;自回归模型;主成分分析;线性判别分析;关联向量机

摘要:癫痫脑电信号自动分类方法的研究具有重要意义.基于自回归模型和关联向量机,实现癫痫脑电信号的自动分类.采用自回归模型,进行脑电信号特征提取;通过引入主成分分析和线性判别分析两种特征变换方法,降低特征空间维数;采用关联向量机作为分类器,提高模型稀疏性并可以得到概率式输出.在对波恩大学癫痫研究中心脑电信号的分类中,所提出的方法最高准确率可以达到99.875%;在将特征空间维数降至原始维数的1/15时,分类准确率仍可达到99.500%;采用关联向量机作为分类器,模型稀疏性大幅提高,与支持向量机相比,同等条件下关联向量数仅为支持向量数的几十分之一.所提方法可以很好地应用于癫痫脑电信号的自动分类.