![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Multi-reservoir Echo State Network with Sparse Bayesian Learning
点击次数:
论文类型:会议论文
发表时间:2010-06-06
收录刊物:EI、CPCI-S、Scopus
卷号:6063
期号:PART 1
页面范围:450-456
关键字:Multi-reservoir; ESN; Sparse Bayesian; Time series prediction
摘要:A multi-reservoir Echo State Network based on the Sparse Bayesian method (MrBESN) is proposed in this paper. When multivariate time series are predicted with single reservoir ESN model, the dimensions of phase-space reconstruction can be only selected a single value, which can not portray respectively the dynamic feature of complex system. To some extent, that limits the freedom degree of the prediction model and has bad effect on the predicted result. MrBESN will expand the simple input into high-dimesional feature vector and provide the automatic estimation of the hyper-parameters with Sparse Bayesian. A simulation example, that is a set of real world time series, is used to demonstrate the validity of the proposed method.