韩敏

个人信息Personal Information

教授

博士生导师

硕士生导师

性别:女

毕业院校:日本九州大学

学位:博士

所在单位:控制科学与工程学院

办公地点:创新园大厦B601

联系方式:minhan@dlut.edu.cn

电子邮箱:minhan@dlut.edu.cn

扫描关注

论文成果

当前位置: 中文主页 >> 科学研究 >> 论文成果

Orthogonal Least Squares Based on Singular Value Decomposition for Spare Basis Selection

点击次数:

论文类型:会议论文

发表时间:2010-06-06

收录刊物:EI、CPCI-S、SCIE、Scopus

卷号:6063

期号:PART 1

页面范围:413-421

关键字:singular value decomposition; orthogonal least square; predicted residual sums of squares (PRESS) statistic; spare bases selection

摘要:This paper proposes an improved orthogonal least square algorithm based on Singular Value Decomposition for spare basis selection of the linear-in-the-weights regression models. The improved algorithm is based on the idea of reducing meaningless calculation of the selection process through the improvement of orthogonal least square by using the Singular Value Decomposition. This is achieved by dividing the original candidate bases into several parts to avoid comparing among poor candidate regressors. The computation is further simplified by utilizing the Singular Value Decomposition to each sub-block and replacing every sub-candidate bases with the obtained left singular matrix, which is a unitary matrix with lower dimension. It can avoid the computation burden of the repeated orthogonalisation process before each optimal regressor is determined. This algorithm is applied to the linear-in-the-weights regression models with the predicted residual sums of squares (PRESS) statistic and minimizes it in an incremental manner. For several real and benchmark examples, the present results indicate that the proposed algorithm can relieve the load of the heave calculation and achieve a spare model with good performance.