![]() |
个人信息Personal Information
教授
博士生导师
硕士生导师
性别:女
毕业院校:日本九州大学
学位:博士
所在单位:控制科学与工程学院
办公地点:创新园大厦B601
联系方式:minhan@dlut.edu.cn
电子邮箱:minhan@dlut.edu.cn
Ternary reversible extreme learning machines: the incremental tri-training method for semi-supervised classification
点击次数:
论文类型:期刊论文
发表时间:2010-06-01
发表刊物:KNOWLEDGE AND INFORMATION SYSTEMS
收录刊物:SCIE、Scopus
卷号:23
期号:3
页面范围:345-372
ISSN号:0219-1377
关键字:Semi-supervised classification; Tri-training; Extreme learning machine; Incremental learning; Reversible derivation
摘要:Tri-training method proposed by Zhou et al., is an excellent method for semi-supervised classification; nevertheless, the heavy computational burden caused by the retraining strategy prevents the further application of tri-training method. To address this problem, this paper proposes the ternary reversible extreme learning machines (TRELM) which is an incremental tri-training method without relying on the retraining strategy. TRELM employs three reversible extreme learning machines (RELM) as its base learners and trains the RELM with extended (or detected) samples in each learning round. RELM is an incremental learning method with reversible derivation capability. RELM can overcome the difficulty for most incremental learning methods in removing the influence of previously learned mistaken samples. Experimental results indicate that TRELM significantly improves the learning speed of tri-training method. In addition, TRELM achieves comparable (or even better) classification performance to other effective semi-supervised learning methods. TRELM is an appropriate choice for semi-supervised classification tasks with large amounts of data sets or with strict demands for learning speed and classification accuracy.