个人信息Personal Information
教授
博士生导师
硕士生导师
性别:男
出生日期:1972-11-18
毕业院校:大连理工大学
学位:博士
所在单位:力学与航空航天学院
学科:工程力学. 计算力学. 动力学与控制
办公地点:综合实验1号楼513
联系方式:手机号码: 13942024929; 微信号码: 13942024929;
电子邮箱:zhaogz@dlut.edu.cn
Geometrically nonlinear analysis of CNT-reinforced functionally graded composite plates integrated with piezoelectric layers
点击次数:
论文类型:期刊论文
发表时间:2020-02-15
发表刊物:COMPOSITE STRUCTURES
收录刊物:EI、SCIE
卷号:234
ISSN号:0263-8223
关键字:Smart structures; CNT functionally graded; Geometrically nonlinear; Large rotations; Composite structures
摘要:The paper develops a geometrically nonlinear finite element model with large rotation based on the first-order shear deformation (FOSD) hypothesis for static and dynamic analyses of piezoelectric integrated carbon nanotube reinforced functionally graded (P-CNT-FG) composite structures. A constant electric field distribution through the thickness of plate is considered. An eight-node quadrilateral plate element with five mechanical degrees of freedom (DOFs) and one electric degree of freedom is developed for finite element analysis. Four typical forms of CNT distributions are included in the model, namely uniform, V-shaped, O-shaped, and X-shaped distributions. The nonlinear model considers fully geometrically nonlinear strain-displacement relations and large rotations of the shell direction of plate. Using the Hamilton's principle, a nonlinear dynamic model including dynamic and sensory equations is obtained. The proposed nonlinear model is validated by a frequency analysis of a simply supported P-CNT-FG composite plate. Furthermore, the effects of various parameters on the static and dynamic behavior are investigated, e.g. CNT-reinforcement orientation, CNT distribution, the number of laminate layers and volume fraction.