location: Current position: Home >> Scientific Research >> Paper Publications

Electronic and Structural Effects of Inner Sphere Coordination of Chloride to a Homoleptic Copper(II) Diimine Complex

Hits:

Indexed by:期刊论文

Date of Publication:2018-04-16

Journal:INORGANIC CHEMISTRY

Included Journals:SCIE

Volume:57

Issue:8

Page Number:4556-4562

ISSN No.:0020-1669

Abstract:The reaction of CuCl2 with 2,9-dimethyl-1,10-phenanthroline (dmp) does not lead to the formation of [Cu(dmp)(2)](Cl)(2) but instead to [Cu(dmp)(2)Cl]Cl, a 5-coordinated complex, in which one chloride is directly coordinated to the metal center. Attempts at removing the coordinated chloride by changing the counterion by metathesis were unsuccessful and resulted only in the exchange of the noncoordinated chloride, as confirmed from a crystal structure analysis. Complex [Cu-(dmp)(2)Cl]PF6 exhibits a reversible cyclic voltammogram characterized by a significant peak splitting between the reductive and oxidative waves (0.85 and 0.60 V vs NHE, respectively), with a half-wave potential E-1/2 = 0.73 V vs NHE. When reduced electrochemically, the complex does not convert into [Cu(dmp)(2)](+), as one may expect. Instead, [Cu(dmp)(2)](+) is isolated as a product when the reduction of [Cu(dmp)(2)Cl]PF6 is performed with L-ascorbic acid, as confirmed by electrochemistry, NMR spectroscopy, and diffractometry. [Cu(dmp)(2)](2+) complexes can be synthesized starting from Cu(II) salts with weakly and noncoordinating counterions, such as perchlorate. Growth of [Cu(dmp)(2)](ClO4)(2) crystals in acetonitrile results in a 5-coordinated complex, [Cu(dmp)(2)(CH3CN)](ClO4)(2), in which a solvent molecule is coordinated to the metal center. However, solvent coordination is associated with a dynamic decoordination-coordination behavior upon reduction and oxidation. Hence, the cyclic voltammogram of [Cu(dmp)(2)(CH3CN)](2+) is identical to the one of [Cu(dmp)(2)](+), if the measurements are performed in acetonitrile. The current results show that halide ions in precursors to Cu(II) metal-organic coordination compound synthesis, and most likely also other multivalent coordination centers, are not readily exchanged when exposed to presumed strongly binding and chelating ligand, and thus special care needs to be taken with respect to product characterization.

Pre One:Progress in hole-transporting materials for perovskite solar cells

Next One:Integration of FeOOH and Zeolitic Imidazolate Framework-Derived Nanoporous Carbon as an Efficient Electrocatalyst for Water Oxidation