Hits:
Indexed by:期刊论文
Date of Publication:2012-05-01
Journal:NATURE CHEMISTRY
Included Journals:SCIE、ESI高被引论文、Scopus
Volume:4
Issue:5
Page Number:418-423
ISSN No.:1755-4330
Abstract:Across chemical disciplines, an interest in developing artificial water splitting to O-2 and H-2, driven by sunlight, has been motivated by the need for practical and environmentally friendly power generation without the consumption of fossil fuels. The central issue in light-driven water splitting is the efficiency of the water oxidation, which in the best-known catalysts falls short of the desired level by approximately two orders of magnitude. Here, we show that it is possible to close that 'two orders of magnitude' gap with a rationally designed molecular catalyst [Ru(bda)(isoq)(2)] (H(2)bda = 2,2'-bipyridine-6,6'-dicarboxylic acid; isoq = isoquinoline). This speeds up the water oxidation to an unprecedentedly high reaction rate with a turnover frequency of >300 s(-1). This value is, for the first time, moderately comparable with the reaction rate of 100-400 s(-1) of the oxygen-evolving complex of photosystem II in vivo.