Indexed by:期刊论文
Date of Publication:2009-01-01
Journal:Key Engineering Materials
Included Journals:EI、CPCI-S、Scopus
Volume:416
Page Number:66-70
ISSN No.:10139826
Key Words:Silicon wafer; Grinding; Subsurface damage model
Abstract:In order to better understand the grinding mechanism, the rough, semi-fine and fine ground silicon wafer subsurface damage models are experimentally investigated with the aid of advanced measurement methods. The results show that the rough ground wafer subsurface damage model is composed of large quantity of microcracks with complicated configurations, high density dislocations, stalk faults and elastic deformation layer. Among them microcracks, dislocations and stalk faults are dominant. Apart from the above damage, the amorphous layer and polycrystalline layer (Si-I, Si-III, Si-IV and Si-XII) exist in the semi-fine ground and fine ground wafer subsurface damage models. The amorphous layer depth firstly increases from rough grinding to semi-fine grinding and then decreases from semi-fine grinding to fine grinding. The damage model can be divided in severe damage part and elastic deformation part with high stress. When the material is removed by ductile mode two parts are all small and the ratio of second part is relatively great. © (2009) Trans Tech Publications, Switzerland.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : 国际磨粒技术学会(International Committee of Abrasive Technology, ICAT)委员,中国机械工程学会极端制造分会副主任、生产工程分会常务委员、微纳米制造技术分会常务委员,中国机械工程学会生产工程分会磨粒加工技术专业委员会副主任、切削加工专业委员会常委委员、精密工程与微纳技术专业委员会常委委员,中国机械工程学会特种加工分会超声加工技术委员会副主任,中国机械工程学会摩擦学分会微纳制造摩擦学专业委员会常务委员,中国机械工业金属切削刀具协会切削先进制造技术研究会常务理事、对外学术交流工作委员会副主任、切削先进制造技术研究会自动化加工技术与系统委员会副主任。
Gender:Male
Alma Mater:西北工业大学
Degree:Doctoral Degree
School/Department:机械工程学院
Discipline:Mechanical Manufacture and Automation. Mechatronic Engineering. Manufacturing Engineering of Aerospace Vehicle
Business Address:机械工程学院7191
Open time:..
The Last Update Time:..