Indexed by:Journal Papers
Date of Publication:2019-09-01
Journal:INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY
Included Journals:SCIE、EI
Volume:104
Issue:1-4
Page Number:803-813
ISSN No.:0268-3768
Key Words:Optical quartz glass; SPH; Ductile machining; Brittle-ductile transition; Subsurface damage
Abstract:The SPH simulation model of optical quartz glass was established to study the ductile machining process with different tool rake angles. The material removal mode, stress distribution, cutting force, and subsurface damage during machining were analyzed. The critical cutting depths of brittle-ductile transition under different tool rake angles were obtained. The simulation results show that the tool negative rake angle is better than the positive rake angle in promoting the ductile machining of optical quartz glass. When the tool rake angle is negative, significant compressive stress which suppresses the crack generation by reducing the stress intensity factor K-I is generated in the chip forming area, thus realizing the ductile machining of optical quartz glass. The greater the tool negative rake angle is, the more stable the cutting force and the greater the critical cutting depths of brittle-ductile transition are. When the tool negative rake angle is greater than - 35 degrees, the subsurface damage of the optical quartz glass is aggravated, and the subsurface residual stress is complicated. When the tool negative rake angle ranges from - 15 degrees to - 35 degrees, the optical quartz glass is not only machined in a stable ductile region but also has less subsurface damage. Finally, nano-scratch experiments were carried out, and the critical depths of the brittle-ductile transition obtained by the experiments are basically consistent with the simulation results, which verify the correctness of the simulation results. The research results in this paper could provide a theoretical basis for the optimal selection of tool rake angle in the ductile machining of optical quartz glass.
Professor
Supervisor of Doctorate Candidates
Supervisor of Master's Candidates
Title : 国际磨粒技术学会(International Committee of Abrasive Technology, ICAT)委员,中国机械工程学会极端制造分会副主任、生产工程分会常务委员、微纳米制造技术分会常务委员,中国机械工程学会生产工程分会磨粒加工技术专业委员会副主任、切削加工专业委员会常委委员、精密工程与微纳技术专业委员会常委委员,中国机械工程学会特种加工分会超声加工技术委员会副主任,中国机械工程学会摩擦学分会微纳制造摩擦学专业委员会常务委员,中国机械工业金属切削刀具协会切削先进制造技术研究会常务理事、对外学术交流工作委员会副主任、切削先进制造技术研究会自动化加工技术与系统委员会副主任。
Gender:Male
Alma Mater:西北工业大学
Degree:Doctoral Degree
School/Department:机械工程学院
Discipline:Mechanical Manufacture and Automation. Mechatronic Engineering. Manufacturing Engineering of Aerospace Vehicle
Business Address:机械工程学院7191
Open time:..
The Last Update Time:..